Spaces:
Runtime error
Runtime error
Merge branch 'main' into our_hf2
Browse files
app.py
CHANGED
|
@@ -10,9 +10,11 @@
|
|
| 10 |
import argparse
|
| 11 |
from concurrent.futures import ProcessPoolExecutor
|
| 12 |
import os
|
|
|
|
| 13 |
import subprocess as sp
|
| 14 |
from tempfile import NamedTemporaryFile
|
| 15 |
import time
|
|
|
|
| 16 |
import warnings
|
| 17 |
|
| 18 |
import torch
|
|
@@ -50,6 +52,29 @@ def interrupt():
|
|
| 50 |
INTERRUPTING = True
|
| 51 |
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
def make_waveform(*args, **kwargs):
|
| 54 |
# Further remove some warnings.
|
| 55 |
be = time.time()
|
|
@@ -103,8 +128,12 @@ def _do_predictions(texts, melodies, duration, progress=False, **gen_kwargs):
|
|
| 103 |
file.name, output, MODEL.sample_rate, strategy="loudness",
|
| 104 |
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
|
| 105 |
out_files.append(pool.submit(make_waveform, file.name))
|
|
|
|
| 106 |
res = [out_file.result() for out_file in out_files]
|
|
|
|
|
|
|
| 107 |
print("batch finished", len(texts), time.time() - be)
|
|
|
|
| 108 |
return res
|
| 109 |
|
| 110 |
|
|
@@ -140,18 +169,21 @@ def predict_full(model, text, melody, duration, topk, topp, temperature, cfg_coe
|
|
| 140 |
top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
|
| 141 |
return outs[0]
|
| 142 |
|
|
|
|
| 143 |
def toggle_audio_src(choice):
|
| 144 |
if choice == "mic":
|
| 145 |
return gr.update(source="microphone", value=None, label="Microphone")
|
| 146 |
else:
|
| 147 |
return gr.update(source="upload", value=None, label="File")
|
| 148 |
-
|
|
|
|
| 149 |
def ui_full(launch_kwargs):
|
| 150 |
with gr.Blocks() as interface:
|
| 151 |
gr.Markdown(
|
| 152 |
"""
|
| 153 |
# MusicGen
|
| 154 |
-
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
|
|
|
|
| 155 |
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
|
| 156 |
"""
|
| 157 |
)
|
|
@@ -160,14 +192,17 @@ def ui_full(launch_kwargs):
|
|
| 160 |
with gr.Row():
|
| 161 |
text = gr.Text(label="Input Text", interactive=True)
|
| 162 |
with gr.Column():
|
| 163 |
-
radio = gr.Radio(["file", "mic"], value="file",
|
| 164 |
-
|
|
|
|
|
|
|
| 165 |
with gr.Row():
|
| 166 |
submit = gr.Button("Submit")
|
| 167 |
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
|
| 168 |
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
|
| 169 |
with gr.Row():
|
| 170 |
-
model = gr.Radio(["melody", "medium", "small", "large"],
|
|
|
|
| 171 |
with gr.Row():
|
| 172 |
duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True)
|
| 173 |
with gr.Row():
|
|
@@ -177,7 +212,9 @@ def ui_full(launch_kwargs):
|
|
| 177 |
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
|
| 178 |
with gr.Column():
|
| 179 |
output = gr.Video(label="Generated Music")
|
| 180 |
-
submit.click(predict_full,
|
|
|
|
|
|
|
| 181 |
radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
|
| 182 |
gr.Examples(
|
| 183 |
fn=predict_full,
|
|
@@ -221,17 +258,20 @@ def ui_full(launch_kwargs):
|
|
| 221 |
This can take a long time, and the model might lose consistency. The model might also
|
| 222 |
decide at arbitrary positions that the song ends.
|
| 223 |
|
| 224 |
-
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min).
|
| 225 |
-
is kept with the previously generated chunk, and 18 "new" seconds
|
|
|
|
| 226 |
|
| 227 |
We present 4 model variations:
|
| 228 |
-
1. Melody -- a music generation model capable of generating music condition
|
|
|
|
| 229 |
2. Small -- a 300M transformer decoder conditioned on text only.
|
| 230 |
3. Medium -- a 1.5B transformer decoder conditioned on text only.
|
| 231 |
4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.)
|
| 232 |
|
| 233 |
When using `melody`, ou can optionaly provide a reference audio from
|
| 234 |
-
which a broad melody will be extracted. The model will then try to follow both
|
|
|
|
| 235 |
|
| 236 |
You can also use your own GPU or a Google Colab by following the instructions on our repo.
|
| 237 |
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
|
|
@@ -248,11 +288,14 @@ def ui_batched(launch_kwargs):
|
|
| 248 |
"""
|
| 249 |
# MusicGen
|
| 250 |
|
| 251 |
-
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
|
|
|
|
| 252 |
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
|
| 253 |
<br/>
|
| 254 |
-
<a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true"
|
| 255 |
-
|
|
|
|
|
|
|
| 256 |
for longer sequences, more control and no queue.</p>
|
| 257 |
"""
|
| 258 |
)
|
|
@@ -261,13 +304,16 @@ def ui_batched(launch_kwargs):
|
|
| 261 |
with gr.Row():
|
| 262 |
text = gr.Text(label="Describe your music", lines=2, interactive=True)
|
| 263 |
with gr.Column():
|
| 264 |
-
radio = gr.Radio(["file", "mic"], value="file",
|
| 265 |
-
|
|
|
|
|
|
|
| 266 |
with gr.Row():
|
| 267 |
submit = gr.Button("Generate")
|
| 268 |
with gr.Column():
|
| 269 |
output = gr.Video(label="Generated Music")
|
| 270 |
-
submit.click(predict_batched, inputs=[text, melody],
|
|
|
|
| 271 |
radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
|
| 272 |
gr.Examples(
|
| 273 |
fn=predict_batched,
|
|
|
|
| 10 |
import argparse
|
| 11 |
from concurrent.futures import ProcessPoolExecutor
|
| 12 |
import os
|
| 13 |
+
from pathlib import Path
|
| 14 |
import subprocess as sp
|
| 15 |
from tempfile import NamedTemporaryFile
|
| 16 |
import time
|
| 17 |
+
import typing as tp
|
| 18 |
import warnings
|
| 19 |
|
| 20 |
import torch
|
|
|
|
| 52 |
INTERRUPTING = True
|
| 53 |
|
| 54 |
|
| 55 |
+
class FileCleaner:
|
| 56 |
+
def __init__(self, file_lifetime: float = 3600):
|
| 57 |
+
self.file_lifetime = file_lifetime
|
| 58 |
+
self.files = []
|
| 59 |
+
|
| 60 |
+
def add(self, path: tp.Union[str, Path]):
|
| 61 |
+
self._cleanup()
|
| 62 |
+
self.files.append((time.time(), Path(path)))
|
| 63 |
+
|
| 64 |
+
def _cleanup(self):
|
| 65 |
+
now = time.time()
|
| 66 |
+
for time_added, path in list(self.files):
|
| 67 |
+
if now - time_added > self.file_lifetime:
|
| 68 |
+
if path.exists():
|
| 69 |
+
path.unlink()
|
| 70 |
+
self.files.pop(0)
|
| 71 |
+
else:
|
| 72 |
+
break
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
file_cleaner = FileCleaner()
|
| 76 |
+
|
| 77 |
+
|
| 78 |
def make_waveform(*args, **kwargs):
|
| 79 |
# Further remove some warnings.
|
| 80 |
be = time.time()
|
|
|
|
| 128 |
file.name, output, MODEL.sample_rate, strategy="loudness",
|
| 129 |
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
|
| 130 |
out_files.append(pool.submit(make_waveform, file.name))
|
| 131 |
+
file_cleaner.add(file.name)
|
| 132 |
res = [out_file.result() for out_file in out_files]
|
| 133 |
+
for file in res:
|
| 134 |
+
file_cleaner.add(file)
|
| 135 |
print("batch finished", len(texts), time.time() - be)
|
| 136 |
+
print("Tempfiles currently stored: ", len(file_cleaner.files))
|
| 137 |
return res
|
| 138 |
|
| 139 |
|
|
|
|
| 169 |
top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
|
| 170 |
return outs[0]
|
| 171 |
|
| 172 |
+
|
| 173 |
def toggle_audio_src(choice):
|
| 174 |
if choice == "mic":
|
| 175 |
return gr.update(source="microphone", value=None, label="Microphone")
|
| 176 |
else:
|
| 177 |
return gr.update(source="upload", value=None, label="File")
|
| 178 |
+
|
| 179 |
+
|
| 180 |
def ui_full(launch_kwargs):
|
| 181 |
with gr.Blocks() as interface:
|
| 182 |
gr.Markdown(
|
| 183 |
"""
|
| 184 |
# MusicGen
|
| 185 |
+
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
|
| 186 |
+
a simple and controllable model for music generation
|
| 187 |
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
|
| 188 |
"""
|
| 189 |
)
|
|
|
|
| 192 |
with gr.Row():
|
| 193 |
text = gr.Text(label="Input Text", interactive=True)
|
| 194 |
with gr.Column():
|
| 195 |
+
radio = gr.Radio(["file", "mic"], value="file",
|
| 196 |
+
label="Condition on a melody (optional) File or Mic")
|
| 197 |
+
melody = gr.Audio(source="upload", type="numpy", label="File",
|
| 198 |
+
interactive=True, elem_id="melody-input")
|
| 199 |
with gr.Row():
|
| 200 |
submit = gr.Button("Submit")
|
| 201 |
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
|
| 202 |
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
|
| 203 |
with gr.Row():
|
| 204 |
+
model = gr.Radio(["melody", "medium", "small", "large"],
|
| 205 |
+
label="Model", value="melody", interactive=True)
|
| 206 |
with gr.Row():
|
| 207 |
duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True)
|
| 208 |
with gr.Row():
|
|
|
|
| 212 |
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
|
| 213 |
with gr.Column():
|
| 214 |
output = gr.Video(label="Generated Music")
|
| 215 |
+
submit.click(predict_full,
|
| 216 |
+
inputs=[model, text, melody, duration, topk, topp, temperature, cfg_coef],
|
| 217 |
+
outputs=[output])
|
| 218 |
radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
|
| 219 |
gr.Examples(
|
| 220 |
fn=predict_full,
|
|
|
|
| 258 |
This can take a long time, and the model might lose consistency. The model might also
|
| 259 |
decide at arbitrary positions that the song ends.
|
| 260 |
|
| 261 |
+
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min).
|
| 262 |
+
An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds
|
| 263 |
+
are generated each time.
|
| 264 |
|
| 265 |
We present 4 model variations:
|
| 266 |
+
1. Melody -- a music generation model capable of generating music condition
|
| 267 |
+
on text and melody inputs. **Note**, you can also use text only.
|
| 268 |
2. Small -- a 300M transformer decoder conditioned on text only.
|
| 269 |
3. Medium -- a 1.5B transformer decoder conditioned on text only.
|
| 270 |
4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.)
|
| 271 |
|
| 272 |
When using `melody`, ou can optionaly provide a reference audio from
|
| 273 |
+
which a broad melody will be extracted. The model will then try to follow both
|
| 274 |
+
the description and melody provided.
|
| 275 |
|
| 276 |
You can also use your own GPU or a Google Colab by following the instructions on our repo.
|
| 277 |
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
|
|
|
|
| 288 |
"""
|
| 289 |
# MusicGen
|
| 290 |
|
| 291 |
+
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
|
| 292 |
+
a simple and controllable model for music generation
|
| 293 |
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
|
| 294 |
<br/>
|
| 295 |
+
<a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true"
|
| 296 |
+
style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
|
| 297 |
+
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
|
| 298 |
+
src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
| 299 |
for longer sequences, more control and no queue.</p>
|
| 300 |
"""
|
| 301 |
)
|
|
|
|
| 304 |
with gr.Row():
|
| 305 |
text = gr.Text(label="Describe your music", lines=2, interactive=True)
|
| 306 |
with gr.Column():
|
| 307 |
+
radio = gr.Radio(["file", "mic"], value="file",
|
| 308 |
+
label="Condition on a melody (optional) File or Mic")
|
| 309 |
+
melody = gr.Audio(source="upload", type="numpy", label="File",
|
| 310 |
+
interactive=True, elem_id="melody-input")
|
| 311 |
with gr.Row():
|
| 312 |
submit = gr.Button("Generate")
|
| 313 |
with gr.Column():
|
| 314 |
output = gr.Video(label="Generated Music")
|
| 315 |
+
submit.click(predict_batched, inputs=[text, melody],
|
| 316 |
+
outputs=[output], batch=True, max_batch_size=MAX_BATCH_SIZE)
|
| 317 |
radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
|
| 318 |
gr.Examples(
|
| 319 |
fn=predict_batched,
|