File size: 5,050 Bytes
c73a79b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ee116
6a16c7d
 
85ee116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import streamlit as st
import json
import numpy as np
import joblib
from collections import defaultdict
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics.pairwise import cosine_similarity
import torch
import re

# ---------------------------
# LegalBERT-based compliance checker
# ---------------------------
class GDPRComplianceChecker:
    def __init__(self, model_name="nlpaueb/bert-base-uncased-eurlex"):
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model.to(self.device).eval()

    def get_embeddings(self, texts):
        embeddings = []
        for text in texts:
            inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
            inputs = {k: v.to(self.device) for k, v in inputs.items()}
            with torch.no_grad():
                output = self.model(**inputs)
                embedding = output.last_hidden_state[:, 0, :].cpu().numpy()
                embeddings.append(embedding[0])
        return np.array(embeddings)

    def chunk_policy_text(self, text, chunk_size=500):
        paragraphs = re.split(r'\n{2,}|\.\s+', text)
        chunks, current = [], ""
        for para in paragraphs:
            if len(current) + len(para) < chunk_size:
                current += " " + para
            else:
                chunks.append(current.strip())
                current = para
        if current:
            chunks.append(current.strip())
        return [chunk for chunk in chunks if len(chunk) > 50]

    def load_gdpr_articles(self, gdpr_json):
        gdpr_map, texts = {}, []
        for article in gdpr_json:
            number, title = article["article_number"], article["article_title"]
            body = " ".join([f"{k} {v}" for sec in article["sections"] for k, v in sec.items()])
            full_text = f"Article {number}: {title}. {body}"
            gdpr_map[number] = {"title": title, "text": full_text}
            texts.append(full_text)
        embeddings = self.get_embeddings(texts)
        return gdpr_map, embeddings

    def calculate_compliance_score(self, policy_text, gdpr_map, gdpr_embeddings):
        chunks = self.chunk_policy_text(policy_text)
        if not chunks:
            return {"error": "Policy has no meaningful chunks."}
        chunk_embeddings = self.get_embeddings(chunks)
        sim_matrix = cosine_similarity(gdpr_embeddings, chunk_embeddings)

        article_scores = {}
        presence_threshold = 0.35
        total_score, counted_articles = 0, 0

        for i, (art_num, art_data) in enumerate(gdpr_map.items()):
            max_sim = np.max(sim_matrix[i])
            best_idx = np.argmax(sim_matrix[i])

            if max_sim < presence_threshold:
                continue

            score_pct = min(100, max(0, (max_sim - presence_threshold) / (1 - presence_threshold) * 100))
            article_scores[art_num] = {
                "article_title": art_data["title"],
                "compliance_percentage": round(score_pct, 2),
                "similarity_score": round(max_sim, 4),
                "matched_text_snippet": chunks[best_idx][:300] + "..."
            }
            total_score += score_pct
            counted_articles += 1

        overall = round(total_score / counted_articles, 2) if counted_articles else 0
        return {
            "overall_compliance_percentage": overall,
            "relevant_articles_analyzed": counted_articles,
            "total_policy_chunks": len(chunks),
            "article_scores": article_scores
        }

# ---------------------------
# Streamlit interface
# ---------------------------
st.set_page_config(page_title="GDPR Compliance Checker", layout="wide")
st.title("πŸ›‘οΈ GDPR Compliance Checker")

# Fixe Dateipfade
gdpr_path = "/app/src/gdpr_articles_baseline.json"
policy_path = "/app/src/sephora_com_policy.txt"

# Laden der Daten
with open(gdpr_path, "r", encoding="utf-8") as f:
    gdpr_data = json.load(f)

with open(policy_path, "r", encoding="utf-8") as f:
    policy_text = f.read()

# Automatische Analyse
with st.spinner("Analyzing using LegalBERT (Eurlex)..."):
    checker = GDPRComplianceChecker()
    gdpr_map, gdpr_embeddings = checker.load_gdpr_articles(gdpr_data)
    result = checker.calculate_compliance_score(policy_text, gdpr_map, gdpr_embeddings)

# Ergebnisse anzeigen
if result:
    st.subheader(f"βœ… Overall Compliance Score: {result['overall_compliance_percentage']}%")
    st.markdown("---")
    st.subheader("πŸ“‹ Detailed Article Breakdown")
    for art_num, data in sorted(result['article_scores'].items(), key=lambda x: -x[1]['compliance_percentage']):
        with st.expander(f"Article {art_num} - {data['article_title']} ({data['compliance_percentage']}%)"):
            st.write(f"**Similarity Score**: {data['similarity_score']}")
            st.write(f"**Matched Text**:\n\n{data['matched_text_snippet']}")