GDPR / src /streamlit_app.py
lenawilli's picture
Update src/streamlit_app.py
6a16c7d verified
raw
history blame
5.05 kB
import streamlit as st
import json
import numpy as np
import joblib
from collections import defaultdict
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics.pairwise import cosine_similarity
import torch
import re
# ---------------------------
# LegalBERT-based compliance checker
# ---------------------------
class GDPRComplianceChecker:
def __init__(self, model_name="nlpaueb/bert-base-uncased-eurlex"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device).eval()
def get_embeddings(self, texts):
embeddings = []
for text in texts:
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
output = self.model(**inputs)
embedding = output.last_hidden_state[:, 0, :].cpu().numpy()
embeddings.append(embedding[0])
return np.array(embeddings)
def chunk_policy_text(self, text, chunk_size=500):
paragraphs = re.split(r'\n{2,}|\.\s+', text)
chunks, current = [], ""
for para in paragraphs:
if len(current) + len(para) < chunk_size:
current += " " + para
else:
chunks.append(current.strip())
current = para
if current:
chunks.append(current.strip())
return [chunk for chunk in chunks if len(chunk) > 50]
def load_gdpr_articles(self, gdpr_json):
gdpr_map, texts = {}, []
for article in gdpr_json:
number, title = article["article_number"], article["article_title"]
body = " ".join([f"{k} {v}" for sec in article["sections"] for k, v in sec.items()])
full_text = f"Article {number}: {title}. {body}"
gdpr_map[number] = {"title": title, "text": full_text}
texts.append(full_text)
embeddings = self.get_embeddings(texts)
return gdpr_map, embeddings
def calculate_compliance_score(self, policy_text, gdpr_map, gdpr_embeddings):
chunks = self.chunk_policy_text(policy_text)
if not chunks:
return {"error": "Policy has no meaningful chunks."}
chunk_embeddings = self.get_embeddings(chunks)
sim_matrix = cosine_similarity(gdpr_embeddings, chunk_embeddings)
article_scores = {}
presence_threshold = 0.35
total_score, counted_articles = 0, 0
for i, (art_num, art_data) in enumerate(gdpr_map.items()):
max_sim = np.max(sim_matrix[i])
best_idx = np.argmax(sim_matrix[i])
if max_sim < presence_threshold:
continue
score_pct = min(100, max(0, (max_sim - presence_threshold) / (1 - presence_threshold) * 100))
article_scores[art_num] = {
"article_title": art_data["title"],
"compliance_percentage": round(score_pct, 2),
"similarity_score": round(max_sim, 4),
"matched_text_snippet": chunks[best_idx][:300] + "..."
}
total_score += score_pct
counted_articles += 1
overall = round(total_score / counted_articles, 2) if counted_articles else 0
return {
"overall_compliance_percentage": overall,
"relevant_articles_analyzed": counted_articles,
"total_policy_chunks": len(chunks),
"article_scores": article_scores
}
# ---------------------------
# Streamlit interface
# ---------------------------
st.set_page_config(page_title="GDPR Compliance Checker", layout="wide")
st.title("πŸ›‘οΈ GDPR Compliance Checker")
# Fixe Dateipfade
gdpr_path = "/app/src/gdpr_articles_baseline.json"
policy_path = "/app/src/sephora_com_policy.txt"
# Laden der Daten
with open(gdpr_path, "r", encoding="utf-8") as f:
gdpr_data = json.load(f)
with open(policy_path, "r", encoding="utf-8") as f:
policy_text = f.read()
# Automatische Analyse
with st.spinner("Analyzing using LegalBERT (Eurlex)..."):
checker = GDPRComplianceChecker()
gdpr_map, gdpr_embeddings = checker.load_gdpr_articles(gdpr_data)
result = checker.calculate_compliance_score(policy_text, gdpr_map, gdpr_embeddings)
# Ergebnisse anzeigen
if result:
st.subheader(f"βœ… Overall Compliance Score: {result['overall_compliance_percentage']}%")
st.markdown("---")
st.subheader("πŸ“‹ Detailed Article Breakdown")
for art_num, data in sorted(result['article_scores'].items(), key=lambda x: -x[1]['compliance_percentage']):
with st.expander(f"Article {art_num} - {data['article_title']} ({data['compliance_percentage']}%)"):
st.write(f"**Similarity Score**: {data['similarity_score']}")
st.write(f"**Matched Text**:\n\n{data['matched_text_snippet']}")