Update src/streamlit_app.py
Browse files- src/streamlit_app.py +26 -98
src/streamlit_app.py
CHANGED
@@ -89,107 +89,35 @@ class GDPRComplianceChecker:
|
|
89 |
"article_scores": article_scores
|
90 |
}
|
91 |
|
92 |
-
|
93 |
-
def chunk_policy_text(text, chunk_size=500):
|
94 |
-
import re
|
95 |
-
paragraphs = re.split(r'\n{2,}|\.\s+', text)
|
96 |
-
chunks, current = [], ""
|
97 |
-
for para in paragraphs:
|
98 |
-
if len(current) + len(para) < chunk_size:
|
99 |
-
current += " " + para
|
100 |
-
else:
|
101 |
-
chunks.append(current.strip())
|
102 |
-
current = para
|
103 |
-
if current:
|
104 |
-
chunks.append(current.strip())
|
105 |
-
return [chunk for chunk in chunks if len(chunk) > 50]
|
106 |
-
|
107 |
-
|
108 |
# ---------------------------
|
109 |
# Streamlit interface
|
110 |
# ---------------------------
|
111 |
st.set_page_config(page_title="GDPR Compliance Checker", layout="wide")
|
112 |
st.title("π‘οΈ GDPR Compliance Checker")
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
)
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
else:
|
141 |
-
model = joblib.load("multinomialNB_model.joblib")
|
142 |
-
vectorizer = joblib.load("multinomialNB_vectorizer.joblib")
|
143 |
-
|
144 |
-
chunks = chunk_policy_text(policy_text)
|
145 |
-
chunks = [c.strip() for c in chunks if len(c.strip()) > 40]
|
146 |
-
X_tfidf = vectorizer.transform(chunks)
|
147 |
-
y_pred = model.predict(X_tfidf)
|
148 |
-
y_proba = model.predict_proba(X_tfidf)
|
149 |
-
|
150 |
-
article_scores = defaultdict(lambda: {
|
151 |
-
"article_title": "",
|
152 |
-
"compliance_percentage": 0.0,
|
153 |
-
"similarity_score": 0.0,
|
154 |
-
"matched_text_snippet": ""
|
155 |
-
})
|
156 |
-
total_score = 0
|
157 |
-
counted_chunks = 0
|
158 |
-
|
159 |
-
for i, (label, prob_vector) in enumerate(zip(y_pred, y_proba)):
|
160 |
-
max_prob = max(prob_vector)
|
161 |
-
if max_prob >= 0.35:
|
162 |
-
score_pct = min(100.0, max(0.0, (max_prob - 0.35) / (1 - 0.35) * 100))
|
163 |
-
if score_pct > article_scores[label]["compliance_percentage"]:
|
164 |
-
article_scores[label]["compliance_percentage"] = score_pct
|
165 |
-
article_scores[label]["similarity_score"] = round(max_prob, 4)
|
166 |
-
article_scores[label]["matched_text_snippet"] = chunks[i][:300] + "..."
|
167 |
-
article_scores[label]["article_title"] = article_title_map.get(label, label)
|
168 |
-
total_score += score_pct
|
169 |
-
counted_chunks += 1
|
170 |
-
|
171 |
-
overall = round(total_score / counted_chunks, 2) if counted_chunks else 0
|
172 |
-
result = {
|
173 |
-
"overall_compliance_percentage": overall,
|
174 |
-
"relevant_articles_analyzed": len(article_scores),
|
175 |
-
"total_policy_chunks": len(chunks),
|
176 |
-
"article_scores": dict(article_scores)
|
177 |
-
}
|
178 |
-
|
179 |
-
elif model_choice == "Knowledge Graphs":
|
180 |
-
st.warning("Knowledge Graphs model is not implemented yet.")
|
181 |
-
result = {}
|
182 |
-
|
183 |
-
else:
|
184 |
-
result = {}
|
185 |
-
|
186 |
-
if result:
|
187 |
-
st.subheader(f"β
Overall Compliance Score: {result['overall_compliance_percentage']}%")
|
188 |
-
st.markdown("---")
|
189 |
-
st.subheader("π Detailed Article Breakdown")
|
190 |
-
for art_num, data in sorted(result['article_scores'].items(), key=lambda x: -x[1]['compliance_percentage']):
|
191 |
-
with st.expander(f"Article {art_num} - {data['article_title']} ({data['compliance_percentage']}%)"):
|
192 |
-
st.write(f"**Similarity Score**: {data['similarity_score']}")
|
193 |
-
st.write(f"**Matched Text**:\n\n{data['matched_text_snippet']}")
|
194 |
-
else:
|
195 |
-
st.info("Please upload both a GDPR JSON file and a company policy text file to begin.")
|
|
|
89 |
"article_scores": article_scores
|
90 |
}
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# ---------------------------
|
93 |
# Streamlit interface
|
94 |
# ---------------------------
|
95 |
st.set_page_config(page_title="GDPR Compliance Checker", layout="wide")
|
96 |
st.title("π‘οΈ GDPR Compliance Checker")
|
97 |
|
98 |
+
# Fixe Dateipfade
|
99 |
+
gdpr_path = "gdpr_articles_baseline.json"
|
100 |
+
policy_path = "sephora_com_policy.txt"
|
101 |
+
|
102 |
+
# Laden der Daten
|
103 |
+
with open(gdpr_path, "r", encoding="utf-8") as f:
|
104 |
+
gdpr_data = json.load(f)
|
105 |
+
|
106 |
+
with open(policy_path, "r", encoding="utf-8") as f:
|
107 |
+
policy_text = f.read()
|
108 |
+
|
109 |
+
# Automatische Analyse
|
110 |
+
with st.spinner("Analyzing using LegalBERT (Eurlex)..."):
|
111 |
+
checker = GDPRComplianceChecker()
|
112 |
+
gdpr_map, gdpr_embeddings = checker.load_gdpr_articles(gdpr_data)
|
113 |
+
result = checker.calculate_compliance_score(policy_text, gdpr_map, gdpr_embeddings)
|
114 |
+
|
115 |
+
# Ergebnisse anzeigen
|
116 |
+
if result:
|
117 |
+
st.subheader(f"β
Overall Compliance Score: {result['overall_compliance_percentage']}%")
|
118 |
+
st.markdown("---")
|
119 |
+
st.subheader("π Detailed Article Breakdown")
|
120 |
+
for art_num, data in sorted(result['article_scores'].items(), key=lambda x: -x[1]['compliance_percentage']):
|
121 |
+
with st.expander(f"Article {art_num} - {data['article_title']} ({data['compliance_percentage']}%)"):
|
122 |
+
st.write(f"**Similarity Score**: {data['similarity_score']}")
|
123 |
+
st.write(f"**Matched Text**:\n\n{data['matched_text_snippet']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|