Upload 9 files
Browse files- src/KnowledgeGraphView.py +143 -0
- src/app-st.py +442 -0
- src/gdpr_articles_baseline.json +0 -0
- src/logistic_regression_model.joblib +3 -0
- src/logistic_regression_vectorizer.joblib +3 -0
- src/multinomialNB_model.joblib +3 -0
- src/multinomialNB_vectorizer.joblib +3 -0
- src/requirements.txt +17 -0
- src/sentence_transformer_model.joblib +3 -0
src/KnowledgeGraphView.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from rdflib import Graph, RDFS, Namespace, URIRef, RDF, Literal
|
3 |
+
from pyvis.network import Network
|
4 |
+
import streamlit.components.v1 as components
|
5 |
+
|
6 |
+
# --- Load RDF ---
|
7 |
+
g = Graph()
|
8 |
+
g.parse("../KnowledgeGraph/gdpr_policy_graph.ttl", format="ttl")
|
9 |
+
|
10 |
+
BASE_URI = "http://example.org/gdpr#"
|
11 |
+
EX = Namespace(BASE_URI)
|
12 |
+
|
13 |
+
# --- UI Layout ---
|
14 |
+
st.set_page_config(layout="wide")
|
15 |
+
st.title("🕸️ GDPR Knowledge Graph Visualizer")
|
16 |
+
|
17 |
+
# --- Get Filter Options ---
|
18 |
+
articles = sorted({str(o).split(" ")[1] for s, p, o in g.triples((None, RDFS.label, None)) if "Article" in str(o)})
|
19 |
+
sections = sorted({
|
20 |
+
str(label)
|
21 |
+
for sec in g.subjects(RDF.type, EX.PolicySection)
|
22 |
+
for label in g.objects(sec, RDFS.label)
|
23 |
+
})
|
24 |
+
|
25 |
+
col1, col2 = st.columns([1, 3])
|
26 |
+
selected_article = col1.selectbox("🔍 Filter by Article Number", ["All"] + articles)
|
27 |
+
selected_section = col2.selectbox("📄 Filter by Policy Section", ["All"] + sections)
|
28 |
+
|
29 |
+
# --- Determine nodes to show based on filters ---
|
30 |
+
def get_related_nodes_for_section(section_label):
|
31 |
+
# Find the PolicySection node
|
32 |
+
matching_sections = [
|
33 |
+
s for s, p, o in g.triples((None, RDFS.label, Literal(section_label)))
|
34 |
+
if (s, RDF.type, EX.PolicySection) in g
|
35 |
+
]
|
36 |
+
if not matching_sections:
|
37 |
+
return set()
|
38 |
+
sec_node = matching_sections[0]
|
39 |
+
|
40 |
+
clause_nodes = set(o for _, _, o in g.triples((sec_node, EX.relatesToClause, None)))
|
41 |
+
article_nodes = set(o for c in clause_nodes for _, _, o in g.triples((c, EX.partOf, None)))
|
42 |
+
return {sec_node} | clause_nodes | article_nodes
|
43 |
+
|
44 |
+
def get_related_nodes_for_article(article_number):
|
45 |
+
# Find Article node(s)
|
46 |
+
article_nodes = set(
|
47 |
+
s for s, p, o in g.triples((None, RDFS.label, None))
|
48 |
+
if (s, RDF.type, EX.Article) in g and f"Article {article_number}" in str(o)
|
49 |
+
)
|
50 |
+
if not article_nodes:
|
51 |
+
return set()
|
52 |
+
article_node = list(article_nodes)[0]
|
53 |
+
|
54 |
+
# Clauses of the article
|
55 |
+
clause_nodes = set(o for _, _, o in g.triples((None, EX.partOf, article_node)))
|
56 |
+
|
57 |
+
# Find all policy sections relating to these clauses
|
58 |
+
policy_sections = set(
|
59 |
+
s for s, p, o in g.triples((None, EX.relatesToClause, None)) if o in clause_nodes
|
60 |
+
)
|
61 |
+
return {article_node} | clause_nodes | policy_sections
|
62 |
+
|
63 |
+
def expand_with_neighbors(graph, nodes):
|
64 |
+
expanded = set(nodes)
|
65 |
+
for node in nodes:
|
66 |
+
# Outgoing neighbors
|
67 |
+
for _, _, o in graph.triples((node, None, None)):
|
68 |
+
expanded.add(o)
|
69 |
+
# Incoming neighbors
|
70 |
+
for s, _, _ in graph.triples((None, None, node)):
|
71 |
+
expanded.add(s)
|
72 |
+
return expanded
|
73 |
+
|
74 |
+
if selected_section != "All" and selected_article != "All":
|
75 |
+
# Filter by both: intersection of sets
|
76 |
+
nodes_for_section = get_related_nodes_for_section(selected_section)
|
77 |
+
nodes_for_article = get_related_nodes_for_article(selected_article)
|
78 |
+
base_nodes = nodes_for_section & nodes_for_article
|
79 |
+
elif selected_section != "All":
|
80 |
+
base_nodes = get_related_nodes_for_section(selected_section)
|
81 |
+
elif selected_article != "All":
|
82 |
+
base_nodes = get_related_nodes_for_article(selected_article)
|
83 |
+
else:
|
84 |
+
# Show everything
|
85 |
+
base_nodes = set()
|
86 |
+
for s, p, o in g:
|
87 |
+
base_nodes.add(s)
|
88 |
+
base_nodes.add(o)
|
89 |
+
|
90 |
+
nodes_to_show = expand_with_neighbors(g, base_nodes)
|
91 |
+
# --- Initialize network ---
|
92 |
+
net = Network(height="750px", width="100%", bgcolor="#ffffff", font_color="black")
|
93 |
+
net.force_atlas_2based(gravity=-30)
|
94 |
+
|
95 |
+
added_nodes = set()
|
96 |
+
|
97 |
+
def get_type(uri):
|
98 |
+
for s, p, o in g.triples((uri, RDFS.label, None)):
|
99 |
+
label = str(o)
|
100 |
+
if label.startswith("Article"):
|
101 |
+
return "article"
|
102 |
+
elif label.startswith("Art."):
|
103 |
+
return "clause"
|
104 |
+
elif label.startswith("Section"):
|
105 |
+
return "section"
|
106 |
+
return "unknown"
|
107 |
+
|
108 |
+
def get_label(g, node):
|
109 |
+
for _, _, label in g.triples((node, RDFS.label, None)):
|
110 |
+
return str(label)
|
111 |
+
return None
|
112 |
+
|
113 |
+
def color_by_type(node_type):
|
114 |
+
return {
|
115 |
+
"article": "#77B5FE", # blue
|
116 |
+
"clause": "#81C784", # green
|
117 |
+
"section": "#FFB74D", # orange
|
118 |
+
}.get(node_type, "#D3D3D3")
|
119 |
+
|
120 |
+
# --- Add nodes ---
|
121 |
+
for node in nodes_to_show:
|
122 |
+
label = get_label(g, node) or (str(node).split("#")[-1] if isinstance(node, URIRef) else str(node))
|
123 |
+
n_type = get_type(node)
|
124 |
+
tooltip = label
|
125 |
+
for val in g.objects(node, EX.similarityScore):
|
126 |
+
tooltip += f"\nSimilarity: {val}"
|
127 |
+
for val in g.objects(node, RDFS.comment):
|
128 |
+
tooltip += f"\n{val}"
|
129 |
+
net.add_node(str(node), label=label, title=tooltip, color=color_by_type(n_type))
|
130 |
+
added_nodes.add(str(node))
|
131 |
+
|
132 |
+
# --- Add edges only between shown nodes ---
|
133 |
+
for s, p, o in g:
|
134 |
+
if s in nodes_to_show and o in nodes_to_show:
|
135 |
+
pred_label = p.split("#")[-1] if isinstance(p, URIRef) else str(p)
|
136 |
+
net.add_edge(str(s), str(o), label=pred_label)
|
137 |
+
|
138 |
+
# --- Render ---
|
139 |
+
net.save_graph("graph.html")
|
140 |
+
with open("graph.html", "r", encoding="utf-8") as f:
|
141 |
+
html = f.read()
|
142 |
+
|
143 |
+
components.html(html, height=780, scrolling=True)
|
src/app-st.py
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import joblib
|
5 |
+
from collections import defaultdict
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
import torch
|
9 |
+
import re
|
10 |
+
from typing import List, Dict, Any
|
11 |
+
from openai import OpenAI
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
import os
|
14 |
+
from sentence_transformers import SentenceTransformer
|
15 |
+
from rdflib import Graph, Namespace, URIRef, Literal, RDF, RDFS, XSD
|
16 |
+
import os
|
17 |
+
import networkx as nx
|
18 |
+
from pyvis.network import Network
|
19 |
+
import streamlit.components.v1 as components
|
20 |
+
|
21 |
+
# ---------------------------
|
22 |
+
# LegalBERT-based compliance checker
|
23 |
+
# ---------------------------
|
24 |
+
class GDPRComplianceChecker:
|
25 |
+
def __init__(self, model_name="nlpaueb/bert-base-uncased-eurlex"):
|
26 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
+
self.model = AutoModel.from_pretrained(model_name)
|
28 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
self.model.to(self.device).eval()
|
30 |
+
|
31 |
+
def get_embeddings(self, texts):
|
32 |
+
embeddings = []
|
33 |
+
for text in texts:
|
34 |
+
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
35 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
36 |
+
with torch.no_grad():
|
37 |
+
output = self.model(**inputs)
|
38 |
+
embedding = output.last_hidden_state[:, 0, :].cpu().numpy()
|
39 |
+
embeddings.append(embedding[0])
|
40 |
+
return np.array(embeddings)
|
41 |
+
|
42 |
+
def chunk_policy_text(self, text, chunk_size=500):
|
43 |
+
paragraphs = re.split(r'\n{2,}|\.\s+', text)
|
44 |
+
chunks, current = [], ""
|
45 |
+
for para in paragraphs:
|
46 |
+
if len(current) + len(para) < chunk_size:
|
47 |
+
current += " " + para
|
48 |
+
else:
|
49 |
+
chunks.append(current.strip())
|
50 |
+
current = para
|
51 |
+
if current:
|
52 |
+
chunks.append(current.strip())
|
53 |
+
return [chunk for chunk in chunks if len(chunk) > 50]
|
54 |
+
|
55 |
+
def load_gdpr_articles(self, gdpr_json):
|
56 |
+
gdpr_map, texts = {}, []
|
57 |
+
for article in gdpr_json:
|
58 |
+
number, title = article["article_number"], article["article_title"]
|
59 |
+
body = " ".join([f"{k} {v}" for sec in article["sections"] for k, v in sec.items()])
|
60 |
+
full_text = f"Article {number}: {title}. {body}"
|
61 |
+
gdpr_map[number] = {"title": title, "text": full_text}
|
62 |
+
texts.append(full_text)
|
63 |
+
|
64 |
+
embeddings = self.get_embeddings(texts)
|
65 |
+
return gdpr_map, embeddings
|
66 |
+
|
67 |
+
def calculate_compliance_score(self, policy_text, gdpr_map, gdpr_embeddings):
|
68 |
+
chunks = self.chunk_policy_text(policy_text)
|
69 |
+
if not chunks:
|
70 |
+
return {"error": "Policy has no meaningful chunks."}
|
71 |
+
chunk_embeddings = self.get_embeddings(chunks)
|
72 |
+
sim_matrix = cosine_similarity(gdpr_embeddings, chunk_embeddings)
|
73 |
+
|
74 |
+
article_scores = {}
|
75 |
+
presence_threshold = 0.35
|
76 |
+
total_score, counted_articles = 0, 0
|
77 |
+
|
78 |
+
for i, (art_num, art_data) in enumerate(gdpr_map.items()):
|
79 |
+
max_sim = np.max(sim_matrix[i])
|
80 |
+
best_idx = np.argmax(sim_matrix[i])
|
81 |
+
|
82 |
+
if max_sim < presence_threshold:
|
83 |
+
continue
|
84 |
+
|
85 |
+
score_pct = min(100, max(0, (max_sim - presence_threshold) / (1 - presence_threshold) * 100))
|
86 |
+
article_scores[art_num] = {
|
87 |
+
"article_title": art_data["title"],
|
88 |
+
"compliance_percentage": round(score_pct, 2),
|
89 |
+
"similarity_score": round(max_sim, 4),
|
90 |
+
"matched_text_snippet": chunks[best_idx][:300] + "..."
|
91 |
+
}
|
92 |
+
total_score += score_pct
|
93 |
+
counted_articles += 1
|
94 |
+
|
95 |
+
overall = round(total_score / counted_articles, 2) if counted_articles else 0
|
96 |
+
return {
|
97 |
+
"overall_compliance_percentage": overall,
|
98 |
+
"relevant_articles_analyzed": counted_articles,
|
99 |
+
"total_policy_chunks": len(chunks),
|
100 |
+
"article_scores": article_scores
|
101 |
+
}
|
102 |
+
|
103 |
+
|
104 |
+
def chunk_policy_text(text, chunk_size=500):
|
105 |
+
import re
|
106 |
+
paragraphs = re.split(r'\n{2,}|\.\s+', text)
|
107 |
+
chunks, current = [], ""
|
108 |
+
for para in paragraphs:
|
109 |
+
if len(current) + len(para) < chunk_size:
|
110 |
+
current += " " + para
|
111 |
+
else:
|
112 |
+
chunks.append(current.strip())
|
113 |
+
current = para
|
114 |
+
if current:
|
115 |
+
chunks.append(current.strip())
|
116 |
+
return [chunk for chunk in chunks if len(chunk) > 50]
|
117 |
+
|
118 |
+
def prepare_article_text(article: Dict[str, Any]) -> str:
|
119 |
+
body = " ".join(
|
120 |
+
" ".join(sec.values()) if isinstance(sec, dict) else str(sec)
|
121 |
+
for sec in article.get("sections", [])
|
122 |
+
)
|
123 |
+
return f"Art. {article['article_number']} – {article['article_title']} {body}"
|
124 |
+
|
125 |
+
def get_embedding(text: str) -> List[float]:
|
126 |
+
# If input is a list of strings, clean each string
|
127 |
+
if isinstance(text, list):
|
128 |
+
cleaned_text = [t.replace("\n", " ") for t in text]
|
129 |
+
else: # single string
|
130 |
+
cleaned_text = text.replace("\n", " ")
|
131 |
+
resp = client.embeddings.create(model=EMBED_MODEL, input=cleaned_text)
|
132 |
+
if isinstance(cleaned_text, list):
|
133 |
+
return [item.embedding for item in resp.data]
|
134 |
+
else:
|
135 |
+
return resp.data[0].embedding
|
136 |
+
|
137 |
+
def rdflib_to_networkx(rdflib_graph):
|
138 |
+
nx_graph = nx.MultiDiGraph()
|
139 |
+
for s, p, o in rdflib_graph:
|
140 |
+
nx_graph.add_edge(str(s), str(o), label=str(p))
|
141 |
+
return nx_graph
|
142 |
+
|
143 |
+
def draw_pyvis_graph(nx_graph):
|
144 |
+
net = Network(height="600px", width="100%", directed=True, notebook=False)
|
145 |
+
net.from_nx(nx_graph)
|
146 |
+
net.repulsion(node_distance=200, central_gravity=0.33, spring_length=100, spring_strength=0.10, damping=0.95)
|
147 |
+
return net
|
148 |
+
# ---------------------------
|
149 |
+
# Streamlit interface
|
150 |
+
# ---------------------------
|
151 |
+
st.set_page_config(page_title="GDPR Compliance Checker", layout="wide")
|
152 |
+
st.title("🛡️ GDPR Compliance Checker")
|
153 |
+
|
154 |
+
with st.sidebar:
|
155 |
+
st.header("Upload Files")
|
156 |
+
gdpr_file = st.file_uploader("GDPR JSON File", type=["json"])
|
157 |
+
policy_file = st.file_uploader("Company Policy (.txt)", type=["txt"])
|
158 |
+
|
159 |
+
if gdpr_file and policy_file:
|
160 |
+
model_choice = st.selectbox(
|
161 |
+
"Choose the model to use:",
|
162 |
+
["Logistic Regression", "MultinomialNB", "LegalBERT (Eurlex)", "SentenceTransformer", "LLM Model", "Knowledge Graphs"]
|
163 |
+
)
|
164 |
+
|
165 |
+
gdpr_data = json.load(gdpr_file)
|
166 |
+
article_title_map = {f"Article {a['article_number']}": a['article_title'] for a in gdpr_data}
|
167 |
+
|
168 |
+
policy_text = policy_file.read().decode("utf-8")
|
169 |
+
|
170 |
+
with st.spinner("Analyzing..."):
|
171 |
+
if model_choice == "LegalBERT (Eurlex)":
|
172 |
+
checker = GDPRComplianceChecker()
|
173 |
+
gdpr_map, gdpr_embeddings = checker.load_gdpr_articles(gdpr_data)
|
174 |
+
result = checker.calculate_compliance_score(policy_text, gdpr_map, gdpr_embeddings)
|
175 |
+
|
176 |
+
elif model_choice in ["Logistic Regression", "MultinomialNB"]:
|
177 |
+
if model_choice == "Logistic Regression":
|
178 |
+
model = joblib.load("logistic_regression_model.joblib")
|
179 |
+
vectorizer = joblib.load("logistic_regression_vectorizer.joblib")
|
180 |
+
else:
|
181 |
+
model = joblib.load("multinomialNB_model.joblib")
|
182 |
+
vectorizer = joblib.load("multinomialNB_vectorizer.joblib")
|
183 |
+
|
184 |
+
chunks = chunk_policy_text(policy_text)
|
185 |
+
chunks = [c.strip() for c in chunks if len(c.strip()) > 40]
|
186 |
+
X_tfidf = vectorizer.transform(chunks)
|
187 |
+
y_pred = model.predict(X_tfidf)
|
188 |
+
y_proba = model.predict_proba(X_tfidf)
|
189 |
+
|
190 |
+
article_scores = defaultdict(lambda: {
|
191 |
+
"article_title": "",
|
192 |
+
"compliance_percentage": 0.0,
|
193 |
+
"similarity_score": 0.0,
|
194 |
+
"matched_text_snippet": ""
|
195 |
+
})
|
196 |
+
total_score = 0
|
197 |
+
counted_chunks = 0
|
198 |
+
|
199 |
+
for i, (label, prob_vector) in enumerate(zip(y_pred, y_proba)):
|
200 |
+
max_prob = max(prob_vector)
|
201 |
+
if max_prob >= 0.35:
|
202 |
+
score_pct = min(100.0, max(0.0, (max_prob - 0.35) / (1 - 0.35) * 100))
|
203 |
+
if score_pct > article_scores[label]["compliance_percentage"]:
|
204 |
+
article_scores[label]["compliance_percentage"] = score_pct
|
205 |
+
article_scores[label]["similarity_score"] = round(max_prob, 4)
|
206 |
+
article_scores[label]["matched_text_snippet"] = chunks[i][:300] + "..."
|
207 |
+
article_scores[label]["article_title"] = article_title_map.get(label, label)
|
208 |
+
total_score += score_pct
|
209 |
+
counted_chunks += 1
|
210 |
+
|
211 |
+
overall = round(total_score / counted_chunks, 2) if counted_chunks else 0
|
212 |
+
result = {
|
213 |
+
"overall_compliance_percentage": overall,
|
214 |
+
"relevant_articles_analyzed": len(article_scores),
|
215 |
+
"total_policy_chunks": len(chunks),
|
216 |
+
"article_scores": dict(article_scores)
|
217 |
+
}
|
218 |
+
|
219 |
+
elif model_choice == "SentenceTransformer":
|
220 |
+
model = joblib.load("sentence_transformer_model.joblib")
|
221 |
+
gdpr_texts = []
|
222 |
+
gdpr_map = {}
|
223 |
+
for article in gdpr_data:
|
224 |
+
number, title = article["article_number"], article["article_title"]
|
225 |
+
body = " ".join([f"{k} {v}" for sec in article["sections"] for k, v in sec.items()])
|
226 |
+
full_text = f"Article {number}: {title}. {body}"
|
227 |
+
gdpr_map[number] = {
|
228 |
+
"title": title,
|
229 |
+
"text": full_text
|
230 |
+
}
|
231 |
+
gdpr_texts.append(full_text)
|
232 |
+
|
233 |
+
gdpr_embeddings = model.encode(gdpr_texts, convert_to_numpy=True)
|
234 |
+
|
235 |
+
chunks = chunk_policy_text(policy_text)
|
236 |
+
chunk_embeddings = model.encode(chunks, convert_to_numpy=True)
|
237 |
+
|
238 |
+
sim_matrix = cosine_similarity(gdpr_embeddings, chunk_embeddings)
|
239 |
+
|
240 |
+
article_scores = {}
|
241 |
+
presence_threshold = 0.35
|
242 |
+
total_score, counted_articles = 0, 0
|
243 |
+
|
244 |
+
for i, (art_num, art_data) in enumerate(gdpr_map.items()):
|
245 |
+
max_sim = np.max(sim_matrix[i])
|
246 |
+
best_idx = np.argmax(sim_matrix[i])
|
247 |
+
|
248 |
+
if max_sim < presence_threshold:
|
249 |
+
continue
|
250 |
+
|
251 |
+
score_pct = min(100, max(0, (max_sim - presence_threshold) / (1 - presence_threshold) * 100))
|
252 |
+
article_scores[art_num] = {
|
253 |
+
"article_title": art_data["title"],
|
254 |
+
"compliance_percentage": round(score_pct, 2),
|
255 |
+
"similarity_score": round(max_sim, 4),
|
256 |
+
"matched_text_snippet": chunks[best_idx][:300] + "..."
|
257 |
+
}
|
258 |
+
total_score += score_pct
|
259 |
+
counted_articles += 1
|
260 |
+
|
261 |
+
overall = round(total_score / counted_articles, 2) if counted_articles else 0
|
262 |
+
result = {
|
263 |
+
"overall_compliance_percentage": overall,
|
264 |
+
"relevant_articles_analyzed": counted_articles,
|
265 |
+
"total_policy_chunks": len(chunks),
|
266 |
+
"article_scores": article_scores
|
267 |
+
}
|
268 |
+
|
269 |
+
elif model_choice == "LLM Model":
|
270 |
+
load_dotenv()
|
271 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
272 |
+
client = OpenAI(api_key=api_key)
|
273 |
+
EMBED_MODEL = "text-embedding-3-small"
|
274 |
+
gdpr_embeddings = {}
|
275 |
+
gdpr_map = {}
|
276 |
+
for art in gdpr_data:
|
277 |
+
number, title = art["article_number"], art["article_title"]
|
278 |
+
art_text = prepare_article_text(art)
|
279 |
+
gdpr_embeddings[art["article_number"]] = {
|
280 |
+
"embedding": get_embedding(art_text),
|
281 |
+
"title": art["article_title"]
|
282 |
+
}
|
283 |
+
gdpr_map[number] = {"title": title, "text": art_text}
|
284 |
+
chunks = chunk_policy_text(policy_text)
|
285 |
+
chunk_embeddings = get_embedding(chunks)
|
286 |
+
gdpr_embedding_vectors = [v["embedding"] for v in gdpr_embeddings.values()]
|
287 |
+
sim_matrix = cosine_similarity(gdpr_embedding_vectors, chunk_embeddings)
|
288 |
+
|
289 |
+
article_scores = {}
|
290 |
+
presence_threshold = 0.35
|
291 |
+
total_score, counted_articles = 0, 0
|
292 |
+
|
293 |
+
for i, (art_num, art_data) in enumerate(gdpr_map.items()):
|
294 |
+
max_sim = np.max(sim_matrix[i])
|
295 |
+
best_idx = np.argmax(sim_matrix[i])
|
296 |
+
|
297 |
+
if max_sim < presence_threshold:
|
298 |
+
continue
|
299 |
+
|
300 |
+
score_pct = min(100, max(0, (max_sim - presence_threshold) / (1 - presence_threshold) * 100))
|
301 |
+
article_scores[art_num] = {
|
302 |
+
"article_title": art_data["title"],
|
303 |
+
"compliance_percentage": round(score_pct, 2),
|
304 |
+
"similarity_score": round(max_sim, 4),
|
305 |
+
"matched_text_snippet": chunks[best_idx][:300] + "..."
|
306 |
+
}
|
307 |
+
total_score += score_pct
|
308 |
+
counted_articles += 1
|
309 |
+
|
310 |
+
overall = round(total_score / counted_articles, 2) if counted_articles else 0
|
311 |
+
result = {
|
312 |
+
"overall_compliance_percentage": overall,
|
313 |
+
"relevant_articles_analyzed": counted_articles,
|
314 |
+
"total_policy_chunks": len(chunks),
|
315 |
+
"article_scores": article_scores
|
316 |
+
}
|
317 |
+
elif model_choice == "Knowledge Graphs":
|
318 |
+
EMBED_MODEL = "all-MiniLM-L6-v2"
|
319 |
+
model = SentenceTransformer(EMBED_MODEL)
|
320 |
+
TOP_N = 1
|
321 |
+
BASE_URI = "http://example.org/gdpr#"
|
322 |
+
gdpr_embeddings = {}
|
323 |
+
gdpr_map = {}
|
324 |
+
for art in gdpr_data:
|
325 |
+
number, title = art["article_number"], art["article_title"]
|
326 |
+
art_text = prepare_article_text(art)
|
327 |
+
gdpr_embeddings[art["article_number"]] = {
|
328 |
+
"embedding": model.encode(art_text),
|
329 |
+
"title": art["article_title"],
|
330 |
+
"uri": URIRef(f"{BASE_URI}Article{art['article_number']}")
|
331 |
+
}
|
332 |
+
gdpr_map[number] = {"title": title, "text": art_text}
|
333 |
+
g = Graph()
|
334 |
+
EX = Namespace(BASE_URI)
|
335 |
+
g.bind("ex", EX)
|
336 |
+
|
337 |
+
# Add article nodes
|
338 |
+
for num, info in gdpr_embeddings.items():
|
339 |
+
g.add((info["uri"], RDF.type, EX.Article))
|
340 |
+
g.add((info["uri"], RDFS.label, Literal(f"Article {num}: {info['title']}")))
|
341 |
+
# Extract GDPR article vectors
|
342 |
+
article_nums = list(gdpr_embeddings.keys())
|
343 |
+
article_vectors = np.array([gdpr_embeddings[num]["embedding"] for num in article_nums])
|
344 |
+
|
345 |
+
# Score tracking
|
346 |
+
total_score = 0
|
347 |
+
counted_sections = 0
|
348 |
+
chunks = chunk_policy_text(policy_text)
|
349 |
+
report = []
|
350 |
+
presence_threshold = 0.35
|
351 |
+
|
352 |
+
# Process each policy chunk
|
353 |
+
for idx, text in enumerate(chunks, start=1):
|
354 |
+
if not text.strip():
|
355 |
+
continue
|
356 |
+
|
357 |
+
# RDF section node
|
358 |
+
sec_uri = URIRef(f"{BASE_URI}PolicySection{idx}")
|
359 |
+
g.add((sec_uri, RDF.type, EX.PolicySection))
|
360 |
+
g.add((sec_uri, RDFS.label, Literal(f"Section {idx}")))
|
361 |
+
|
362 |
+
# Embed section
|
363 |
+
sec_emb = model.encode(text)
|
364 |
+
|
365 |
+
# Similarities to all articles
|
366 |
+
sims = []
|
367 |
+
for i, art_num in enumerate(article_nums):
|
368 |
+
art_emb = article_vectors[i]
|
369 |
+
sim = cosine_similarity([sec_emb], [art_emb])[0][0]
|
370 |
+
sims.append({
|
371 |
+
"article": art_num,
|
372 |
+
"title": gdpr_embeddings[art_num]["title"],
|
373 |
+
"similarity": round(sim, 4),
|
374 |
+
"uri": gdpr_embeddings[art_num]["uri"],
|
375 |
+
"text": gdpr_map[art_num]["text"]
|
376 |
+
})
|
377 |
+
|
378 |
+
# Sort and pick best match
|
379 |
+
sims.sort(key=lambda x: x["similarity"], reverse=True)
|
380 |
+
top_match = sims[0]
|
381 |
+
|
382 |
+
# Threshold filtering
|
383 |
+
if top_match["similarity"] < presence_threshold:
|
384 |
+
continue
|
385 |
+
|
386 |
+
# Compliance score
|
387 |
+
score_pct = min(100, max(0, (top_match["similarity"] - presence_threshold) / (1 - presence_threshold) * 100))
|
388 |
+
|
389 |
+
# Add RDF triples
|
390 |
+
g.add((sec_uri, EX.relatesTo, top_match["uri"]))
|
391 |
+
g.add((sec_uri, EX.similarityScore, Literal(top_match["similarity"], datatype=XSD.float)))
|
392 |
+
|
393 |
+
|
394 |
+
g.serialize(destination="gdpr_policy_graph.ttl", format="turtle")
|
395 |
+
|
396 |
+
total_score += score_pct
|
397 |
+
counted_sections += 1
|
398 |
+
|
399 |
+
# Final summary
|
400 |
+
overall = round(total_score / counted_sections, 2) if counted_sections else 0
|
401 |
+
result = {
|
402 |
+
"overall_compliance_percentage": overall,
|
403 |
+
"relevant_sections_analyzed": counted_sections,
|
404 |
+
"total_policy_sections": len(chunks),
|
405 |
+
"ttl": True
|
406 |
+
}
|
407 |
+
|
408 |
+
else:
|
409 |
+
result = {}
|
410 |
+
|
411 |
+
if result:
|
412 |
+
st.subheader(f"✅ Overall Compliance Score: {result['overall_compliance_percentage']}%")
|
413 |
+
st.markdown("---")
|
414 |
+
st.subheader("📋 Detailed Article Breakdown")
|
415 |
+
ttl_file_path = "gdpr_policy_graph.ttl"
|
416 |
+
if result.get('article_scores'):
|
417 |
+
for art_num, data in sorted(result['article_scores'].items(), key=lambda x: -x[1]['compliance_percentage']):
|
418 |
+
with st.expander(f"Article {art_num} - {data['article_title']} ({data['compliance_percentage']}%)"):
|
419 |
+
st.write(f"**Similarity Score**: {data['similarity_score']}")
|
420 |
+
st.write(f"**Matched Text**:\n\n{data['matched_text_snippet']}")
|
421 |
+
elif result.get("ttl") and os.path.exists(ttl_file_path):
|
422 |
+
st.markdown("---")
|
423 |
+
st.subheader("🧠 Interactive RDF Graph Visualization")
|
424 |
+
|
425 |
+
g = Graph()
|
426 |
+
g.parse(ttl_file_path, format="ttl")
|
427 |
+
|
428 |
+
nx_graph = rdflib_to_networkx(g)
|
429 |
+
net = draw_pyvis_graph(nx_graph)
|
430 |
+
|
431 |
+
# Save the interactive graph temporarily
|
432 |
+
net.save_graph("rdf_graph.html")
|
433 |
+
HtmlFile = open("rdf_graph.html", "r", encoding="utf-8").read()
|
434 |
+
|
435 |
+
# Display interactive graph inside Streamlit
|
436 |
+
components.html(HtmlFile, height=650, scrolling=True)
|
437 |
+
|
438 |
+
else:
|
439 |
+
st.info("No article scores or RDF graph to display.")
|
440 |
+
|
441 |
+
else:
|
442 |
+
st.info("Please upload both a GDPR JSON file and a company policy text file to begin.")
|
src/gdpr_articles_baseline.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/logistic_regression_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:091220aebae9dc7e864e5dea7c53cee4257342d759fe88bae43e247e4f75c2dd
|
3 |
+
size 8558559
|
src/logistic_regression_vectorizer.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:300da132d26d2172ca64ce66dfb522048fc3b0238e93c850c849744c69c7c46c
|
3 |
+
size 255317
|
src/multinomialNB_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:023df78556de03380ff5a50a0c53c9c2f10bb330f84d4ead95a465aec8c5c84e
|
3 |
+
size 17115775
|
src/multinomialNB_vectorizer.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:300da132d26d2172ca64ce66dfb522048fc3b0238e93c850c849744c69c7c46c
|
3 |
+
size 255317
|
src/requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
scikit-learn
|
3 |
+
nltk
|
4 |
+
joblib
|
5 |
+
streamlit
|
6 |
+
torch
|
7 |
+
transformers
|
8 |
+
numpy
|
9 |
+
matplotlib
|
10 |
+
seaborn
|
11 |
+
sentence_transformers
|
12 |
+
rdflib
|
13 |
+
openai
|
14 |
+
python-dotenv
|
15 |
+
rdflib
|
16 |
+
networkx
|
17 |
+
pyvis
|
src/sentence_transformer_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:517b22c8e93043f88e3fcc73d567e88d3ac9da66babd9d061ed0ca30ed58c6fc
|
3 |
+
size 91394608
|