Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +21 -13
src/streamlit_app.py
CHANGED
@@ -5,21 +5,25 @@ import tensorflow as tf
|
|
5 |
import joblib
|
6 |
import os
|
7 |
import zipfile
|
|
|
8 |
|
9 |
-
#
|
10 |
BASE_DIR = os.path.dirname(__file__)
|
11 |
ZIP_MODEL_PATH = os.path.join(BASE_DIR, "recommender_model.zip")
|
12 |
-
EXTRACTED_MODEL_DIR = os.path.join(BASE_DIR, "recommender_model")
|
13 |
MOVIES_PATH = os.path.join(BASE_DIR, "movies.csv")
|
14 |
ENCODINGS_PATH = os.path.join(BASE_DIR, "encodings.pkl")
|
15 |
|
16 |
@st.cache_resource
|
17 |
def load_model():
|
18 |
try:
|
19 |
-
|
|
|
|
|
|
|
20 |
with zipfile.ZipFile(ZIP_MODEL_PATH, "r") as zip_ref:
|
21 |
-
zip_ref.extractall(
|
22 |
-
|
|
|
23 |
except Exception as e:
|
24 |
st.error(f"Failed to load model: {e}")
|
25 |
st.stop()
|
@@ -29,25 +33,29 @@ def load_assets():
|
|
29 |
try:
|
30 |
df_movies = pd.read_csv(MOVIES_PATH)
|
31 |
except FileNotFoundError:
|
32 |
-
st.error("movies.csv not found.")
|
33 |
st.stop()
|
|
|
34 |
try:
|
35 |
user_map, movie_map = joblib.load(ENCODINGS_PATH)
|
36 |
except FileNotFoundError:
|
37 |
-
st.error("encodings.pkl not found.")
|
38 |
st.stop()
|
|
|
39 |
return df_movies, user_map, movie_map
|
40 |
|
|
|
41 |
model = load_model()
|
42 |
movies_df, user2idx, movie2idx = load_assets()
|
43 |
reverse_movie_map = {v: k for k, v in movie2idx.items()}
|
44 |
|
|
|
45 |
st.title("π¬ TensorFlow Movie Recommender")
|
46 |
-
st.write("Select some movies you've liked to get recommendations:")
|
47 |
|
48 |
movie_titles = movies_df.set_index("movieId")["title"].to_dict()
|
49 |
movie_choices = [movie_titles[mid] for mid in movie2idx.keys() if mid in movie_titles]
|
50 |
-
selected_titles = st.multiselect("Liked movies", sorted(movie_choices))
|
51 |
|
52 |
user_ratings = {}
|
53 |
for title in selected_titles:
|
@@ -55,13 +63,13 @@ for title in selected_titles:
|
|
55 |
if movie_id:
|
56 |
user_ratings[movie_id] = 5.0
|
57 |
|
58 |
-
if st.button("Get Recommendations"):
|
59 |
if not user_ratings:
|
60 |
st.warning("Please select at least one movie.")
|
61 |
else:
|
62 |
liked_indices = [movie2idx[m] for m in user_ratings if m in movie2idx]
|
63 |
if not liked_indices:
|
64 |
-
st.error("No valid movie encodings found.")
|
65 |
st.stop()
|
66 |
|
67 |
avg_embedding = tf.reduce_mean(model.layers[2](tf.constant(liked_indices)), axis=0, keepdims=True)
|
@@ -78,6 +86,6 @@ if st.button("Get Recommendations"):
|
|
78 |
if len(recommended) >= 10:
|
79 |
break
|
80 |
|
81 |
-
st.subheader("
|
82 |
for title, score in recommended:
|
83 |
-
st.write(f"{title} β Score: {score:.3f}")
|
|
|
5 |
import joblib
|
6 |
import os
|
7 |
import zipfile
|
8 |
+
import tempfile
|
9 |
|
10 |
+
# Paths
|
11 |
BASE_DIR = os.path.dirname(__file__)
|
12 |
ZIP_MODEL_PATH = os.path.join(BASE_DIR, "recommender_model.zip")
|
|
|
13 |
MOVIES_PATH = os.path.join(BASE_DIR, "movies.csv")
|
14 |
ENCODINGS_PATH = os.path.join(BASE_DIR, "encodings.pkl")
|
15 |
|
16 |
@st.cache_resource
|
17 |
def load_model():
|
18 |
try:
|
19 |
+
extract_dir = os.path.join(tempfile.gettempdir(), "recommender_model")
|
20 |
+
|
21 |
+
# Extract only if not already extracted
|
22 |
+
if not os.path.exists(extract_dir):
|
23 |
with zipfile.ZipFile(ZIP_MODEL_PATH, "r") as zip_ref:
|
24 |
+
zip_ref.extractall(extract_dir)
|
25 |
+
|
26 |
+
return tf.keras.models.load_model(extract_dir)
|
27 |
except Exception as e:
|
28 |
st.error(f"Failed to load model: {e}")
|
29 |
st.stop()
|
|
|
33 |
try:
|
34 |
df_movies = pd.read_csv(MOVIES_PATH)
|
35 |
except FileNotFoundError:
|
36 |
+
st.error("β Error: movies.csv not found.")
|
37 |
st.stop()
|
38 |
+
|
39 |
try:
|
40 |
user_map, movie_map = joblib.load(ENCODINGS_PATH)
|
41 |
except FileNotFoundError:
|
42 |
+
st.error("β Error: encodings.pkl not found.")
|
43 |
st.stop()
|
44 |
+
|
45 |
return df_movies, user_map, movie_map
|
46 |
|
47 |
+
# Load model and assets
|
48 |
model = load_model()
|
49 |
movies_df, user2idx, movie2idx = load_assets()
|
50 |
reverse_movie_map = {v: k for k, v in movie2idx.items()}
|
51 |
|
52 |
+
# UI
|
53 |
st.title("π¬ TensorFlow Movie Recommender")
|
54 |
+
st.write("Select some movies you've liked to get personalized recommendations:")
|
55 |
|
56 |
movie_titles = movies_df.set_index("movieId")["title"].to_dict()
|
57 |
movie_choices = [movie_titles[mid] for mid in movie2idx.keys() if mid in movie_titles]
|
58 |
+
selected_titles = st.multiselect("ποΈ Liked movies", sorted(movie_choices))
|
59 |
|
60 |
user_ratings = {}
|
61 |
for title in selected_titles:
|
|
|
63 |
if movie_id:
|
64 |
user_ratings[movie_id] = 5.0
|
65 |
|
66 |
+
if st.button("π― Get Recommendations"):
|
67 |
if not user_ratings:
|
68 |
st.warning("Please select at least one movie.")
|
69 |
else:
|
70 |
liked_indices = [movie2idx[m] for m in user_ratings if m in movie2idx]
|
71 |
if not liked_indices:
|
72 |
+
st.error("β οΈ No valid movie encodings found.")
|
73 |
st.stop()
|
74 |
|
75 |
avg_embedding = tf.reduce_mean(model.layers[2](tf.constant(liked_indices)), axis=0, keepdims=True)
|
|
|
86 |
if len(recommended) >= 10:
|
87 |
break
|
88 |
|
89 |
+
st.subheader("πΏ Top 10 Recommendations")
|
90 |
for title, score in recommended:
|
91 |
+
st.write(f"**{title}** β Score: `{score:.3f}`")
|