Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +35 -30
src/streamlit_app.py
CHANGED
@@ -5,7 +5,7 @@ import tensorflow as tf
|
|
5 |
import joblib
|
6 |
import os
|
7 |
|
8 |
-
# Define file paths
|
9 |
BASE_DIR = os.path.dirname(__file__)
|
10 |
KERAS_MODEL_PATH = os.path.join(BASE_DIR, "recommender_model.keras")
|
11 |
MOVIES_PATH = os.path.join(BASE_DIR, "movies.csv")
|
@@ -13,6 +13,9 @@ ENCODINGS_PATH = os.path.join(BASE_DIR, "encodings.pkl")
|
|
13 |
|
14 |
@st.cache_resource
|
15 |
def load_model():
|
|
|
|
|
|
|
16 |
try:
|
17 |
return tf.keras.models.load_model(KERAS_MODEL_PATH)
|
18 |
except Exception as e:
|
@@ -21,35 +24,35 @@ def load_model():
|
|
21 |
|
22 |
@st.cache_data
|
23 |
def load_assets():
|
24 |
-
|
25 |
-
df_movies = pd.read_csv(MOVIES_PATH)
|
26 |
-
except FileNotFoundError:
|
27 |
st.error("β movies.csv not found.")
|
28 |
st.stop()
|
29 |
-
|
|
|
|
|
30 |
try:
|
|
|
31 |
user_map, movie_map = joblib.load(ENCODINGS_PATH)
|
32 |
-
|
33 |
-
|
|
|
34 |
st.stop()
|
35 |
|
36 |
-
return df_movies, user_map, movie_map
|
37 |
-
|
38 |
# Load model and assets
|
39 |
model = load_model()
|
40 |
movies_df, user2idx, movie2idx = load_assets()
|
41 |
reverse_movie_map = {v: k for k, v in movie2idx.items()}
|
42 |
|
43 |
-
#
|
44 |
st.title("π¬ TensorFlow Movie Recommender")
|
45 |
st.write("Select some movies you've liked to get personalized recommendations:")
|
46 |
|
47 |
-
# Movie selection
|
48 |
movie_titles = movies_df.set_index("movieId")["title"].to_dict()
|
49 |
movie_choices = [movie_titles[mid] for mid in movie2idx if mid in movie_titles]
|
50 |
selected_titles = st.multiselect("ποΈ Liked movies", sorted(movie_choices))
|
51 |
|
52 |
-
#
|
53 |
user_ratings = {}
|
54 |
for title in selected_titles:
|
55 |
movie_id = next((k for k, v in movie_titles.items() if v == title), None)
|
@@ -66,23 +69,25 @@ if st.button("π― Get Recommendations"):
|
|
66 |
st.error("β οΈ No valid movie encodings found.")
|
67 |
st.stop()
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
5 |
import joblib
|
6 |
import os
|
7 |
|
8 |
+
# Define file paths (assuming all files are in the same folder as this script)
|
9 |
BASE_DIR = os.path.dirname(__file__)
|
10 |
KERAS_MODEL_PATH = os.path.join(BASE_DIR, "recommender_model.keras")
|
11 |
MOVIES_PATH = os.path.join(BASE_DIR, "movies.csv")
|
|
|
13 |
|
14 |
@st.cache_resource
|
15 |
def load_model():
|
16 |
+
if not os.path.exists(KERAS_MODEL_PATH):
|
17 |
+
st.error(f"β Model file not found at: {KERAS_MODEL_PATH}")
|
18 |
+
st.stop()
|
19 |
try:
|
20 |
return tf.keras.models.load_model(KERAS_MODEL_PATH)
|
21 |
except Exception as e:
|
|
|
24 |
|
25 |
@st.cache_data
|
26 |
def load_assets():
|
27 |
+
if not os.path.exists(MOVIES_PATH):
|
|
|
|
|
28 |
st.error("β movies.csv not found.")
|
29 |
st.stop()
|
30 |
+
if not os.path.exists(ENCODINGS_PATH):
|
31 |
+
st.error("β encodings.pkl not found.")
|
32 |
+
st.stop()
|
33 |
try:
|
34 |
+
df_movies = pd.read_csv(MOVIES_PATH)
|
35 |
user_map, movie_map = joblib.load(ENCODINGS_PATH)
|
36 |
+
return df_movies, user_map, movie_map
|
37 |
+
except Exception as e:
|
38 |
+
st.error(f"β Failed to load assets:\n\n{e}")
|
39 |
st.stop()
|
40 |
|
|
|
|
|
41 |
# Load model and assets
|
42 |
model = load_model()
|
43 |
movies_df, user2idx, movie2idx = load_assets()
|
44 |
reverse_movie_map = {v: k for k, v in movie2idx.items()}
|
45 |
|
46 |
+
# UI
|
47 |
st.title("π¬ TensorFlow Movie Recommender")
|
48 |
st.write("Select some movies you've liked to get personalized recommendations:")
|
49 |
|
50 |
+
# Movie title selection
|
51 |
movie_titles = movies_df.set_index("movieId")["title"].to_dict()
|
52 |
movie_choices = [movie_titles[mid] for mid in movie2idx if mid in movie_titles]
|
53 |
selected_titles = st.multiselect("ποΈ Liked movies", sorted(movie_choices))
|
54 |
|
55 |
+
# User ratings dict
|
56 |
user_ratings = {}
|
57 |
for title in selected_titles:
|
58 |
movie_id = next((k for k, v in movie_titles.items() if v == title), None)
|
|
|
69 |
st.error("β οΈ No valid movie encodings found.")
|
70 |
st.stop()
|
71 |
|
72 |
+
try:
|
73 |
+
# Calculate average embedding and similarity scores
|
74 |
+
avg_embedding = tf.reduce_mean(model.layers[2](tf.constant(liked_indices)), axis=0, keepdims=True)
|
75 |
+
all_movie_indices = tf.range(len(movie2idx))
|
76 |
+
movie_embeddings = model.layers[3](all_movie_indices)
|
77 |
+
scores = tf.reduce_sum(avg_embedding * movie_embeddings, axis=1).numpy()
|
78 |
+
top_indices = np.argsort(scores)[::-1]
|
79 |
|
80 |
+
# Top 10 recommendations excluding already liked
|
81 |
+
recommended = []
|
82 |
+
for idx in top_indices:
|
83 |
+
mid = reverse_movie_map.get(idx)
|
84 |
+
if mid not in user_ratings and mid in movie_titles:
|
85 |
+
recommended.append((movie_titles[mid], scores[idx]))
|
86 |
+
if len(recommended) >= 10:
|
87 |
+
break
|
88 |
|
89 |
+
st.subheader("πΏ Top 10 Recommendations")
|
90 |
+
for title, score in recommended:
|
91 |
+
st.write(f"**{title}** β Score: `{score:.3f}`")
|
92 |
+
except Exception as e:
|
93 |
+
st.error(f"β Error generating recommendations:\n\n{e}")
|