Spaces:
Running
Running
import torch | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
import gradio as gr | |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
from olmocr.data.renderpdf import render_pdf_to_base64png | |
from olmocr.prompts import build_finetuning_prompt | |
from olmocr.prompts.anchor import get_anchor_text | |
# Load processor and model | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16 | |
).eval() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
def process_pdf(file, page=1): | |
# Save uploaded file to disk | |
file_path = file.name | |
# Render the selected PDF page to base64 PNG | |
image_base64 = render_pdf_to_base64png(file_path, page, target_longest_image_dim=1024) | |
main_image = Image.open(BytesIO(base64.b64decode(image_base64))) | |
# Extract document metadata and build the prompt | |
anchor_text = get_anchor_text(file_path, page, pdf_engine="pdfreport", target_length=4000) | |
prompt = build_finetuning_prompt(anchor_text) | |
# Construct chat message | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": prompt}, | |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}, | |
], | |
} | |
] | |
# Tokenize inputs | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[text], images=[main_image], return_tensors="pt", padding=True) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
# Run model | |
with torch.no_grad(): | |
output = model.generate( | |
**inputs, | |
temperature=0.8, | |
max_new_tokens=256, | |
num_return_sequences=1, | |
do_sample=True, | |
) | |
# Decode | |
prompt_len = inputs["input_ids"].shape[1] | |
new_tokens = output[:, prompt_len:] | |
decoded = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) | |
return decoded[0] | |
# Gradio interface | |
iface = gr.Interface( | |
fn=process_pdf, | |
inputs=[ | |
gr.File(label="Upload PDF"), | |
gr.Number(value=1, label="Page Number"), | |
], | |
outputs="text", | |
title="olmOCR PDF Text Extractor", | |
description="Upload a PDF and select a page to extract text using the olmOCR model.", | |
) | |
if __name__ == "__main__": | |
iface.launch() | |