Spaces:
Running
Running
import gradio as gr | |
import torch | |
import base64 | |
import fitz # PyMuPDF | |
from io import BytesIO | |
from PIL import Image | |
from pathlib import Path | |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
from olmocr.data.renderpdf import render_pdf_to_base64png | |
from olmocr.prompts import build_finetuning_prompt | |
from olmocr.prompts.anchor import get_anchor_text | |
from ebooklib import epub | |
# Load model and processor | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16 | |
).eval() | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
def process_pdf_to_epub(pdf_file, title, author): | |
pdf_path = pdf_file.name | |
doc = fitz.open(pdf_path) | |
num_pages = len(doc) | |
# Create EPUB book | |
book = epub.EpubBook() | |
book.set_identifier("id123456") | |
book.set_title(title) | |
book.add_author(author) | |
chapters = [] | |
for i in range(num_pages): | |
page_num = i + 1 | |
print(f"Processing page {page_num}...") # Debugging line | |
try: | |
# Render page to base64 image | |
image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024) | |
anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000) | |
print(f"Anchor text for page {page_num}: {anchor_text}") # Debugging line | |
prompt = build_finetuning_prompt(anchor_text) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": prompt}, | |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}, | |
], | |
} | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image = Image.open(BytesIO(base64.b64decode(image_base64))) | |
inputs = processor( | |
text=[text], | |
images=[image], | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
output = model.generate( | |
**inputs, | |
temperature=0.8, | |
max_new_tokens=512, | |
num_return_sequences=1, | |
do_sample=True, | |
) | |
prompt_length = inputs["input_ids"].shape[1] | |
new_tokens = output[:, prompt_length:].detach().cpu() | |
decoded = "[No output generated]" | |
if new_tokens.shape[1] > 0: | |
try: | |
decoded_list = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) | |
decoded = decoded_list[0].strip() if decoded_list else "[No output generated]" | |
except Exception as decode_error: | |
decoded = f"[Decoding error on page {page_num}: {str(decode_error)}]" | |
else: | |
decoded = "[Model returned no new tokens]" | |
except Exception as processing_error: | |
decoded = f"[Processing error on page {page_num}: {str(processing_error)}]" | |
else: | |
try: | |
# Check if the tokens are empty | |
if not new_tokens: | |
decoded = f"[No tokens generated for page {page_num}]" | |
else: | |
decoded_list = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) | |
decoded = decoded_list[0].strip() if decoded_list else "[No output generated]" | |
except Exception as decode_error: | |
decoded = f"[Decoding error on page {page_num}: {str(decode_error)}]" | |
print(f"Decoded content for page {page_num}: {decoded}") # Debugging line | |
# Create chapter | |
chapter = epub.EpubHtml(title=f"Page {page_num}", file_name=f"page_{page_num}.xhtml", lang="en") | |
chapter.content = f"<h1>Page {page_num}</h1><p>{decoded}</p>" | |
book.add_item(chapter) | |
chapters.append(chapter) | |
# Save cover image from page 1 | |
if page_num == 1: | |
cover_image = Image.open(BytesIO(base64.b64decode(image_base64))) | |
cover_io = BytesIO() | |
cover_image.save(cover_io, format='PNG') | |
book.set_cover("cover.png", cover_io.getvalue()) | |
# Assemble EPUB | |
book.toc = tuple(chapters) | |
book.add_item(epub.EpubNcx()) | |
book.add_item(epub.EpubNav()) | |
book.spine = ['nav'] + chapters | |
output_path = "/tmp/output.epub" | |
epub.write_epub(output_path, book) | |
return output_path | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=process_pdf_to_epub, | |
inputs=[ | |
gr.File(label="Upload PDF", file_types=[".pdf"]), | |
gr.Textbox(label="EPUB Title"), | |
gr.Textbox(label="Author(s)") | |
], | |
outputs=gr.File(label="Download EPUB"), | |
title="PDF to EPUB Converter (with olmOCR)", | |
description="Uploads a PDF, extracts text from each page with vision + prompt, and builds an EPUB using the outputs. Sets the first page as cover.", | |
allow_flagging="never" # Add this line to avoid the flagged directory issue | |
) | |
if __name__ == "__main__": | |
iface.launch( | |
server_name="0.0.0.0", # Required to make app publicly accessible | |
server_port=7860, # Can be changed if needed | |
share=True, # Optional: creates a public Gradio link if supported | |
debug=True, # Optional: helpful if you're troubleshooting | |
allowed_paths=["/tmp"] # Optional: makes it explicit that Gradio can write here | |
) | |