Spaces:
Running
Running
import gradio as gr | |
import torch | |
import base64 | |
import fitz # PyMuPDF | |
import tempfile | |
from io import BytesIO | |
from PIL import Image | |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
from olmocr.data.renderpdf import render_pdf_to_base64png | |
from olmocr.prompts.anchor import get_anchor_text | |
import re | |
import html | |
import json | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16 | |
).eval() | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
def clean_page_headers(text): | |
lines = text.split("\n") | |
cleaned = [] | |
for line in lines: | |
if not re.match(r'^(\s*Page \d+|\s*\d{1,2}\s*/\s*\d{1,2}|^[A-Z][A-Za-z\s]{0,20}$)', line.strip()): | |
cleaned.append(line) | |
return "\n".join(cleaned) | |
def replace_headers_in_text(text, page_headers): | |
lines = text.split("\n") | |
for level, header in page_headers: | |
prefix = "#" * min(level, 6) | |
pattern = re.compile(re.escape(header.strip()), re.IGNORECASE) | |
for idx, line in enumerate(lines): | |
if pattern.fullmatch(line.strip()): | |
lines[idx] = f"{prefix} {header.strip()}" | |
break | |
else: | |
lines.insert(0, f"{prefix} {header.strip()}") | |
return "\n".join(lines) | |
def process_pdf_to_markdown(pdf_file, title, author): | |
pdf_path = pdf_file.name | |
doc = fitz.open(pdf_path) | |
num_pages = len(doc) | |
toc_entries = doc.get_toc() | |
toc_by_page = {} | |
for level, header, page in toc_entries: | |
toc_by_page.setdefault(page, []).append((level, header)) | |
all_text = f"# {title}\n\n**Author(s):** {author}\n\n" | |
for i in range(num_pages): | |
page_num = i + 1 | |
print(f"Processing page {page_num}...") | |
try: | |
image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024) | |
anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000) | |
prompt = ( | |
"Below is the image of one page of a document, as well as some raw textual content that was previously " | |
"extracted for it. Just return the plain text representation of this document as if you were reading it naturally.\n" | |
"Do not hallucinate.\n" | |
"RAW_TEXT_START\n" | |
f"{anchor_text}\n" | |
"RAW_TEXT_END" | |
) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": prompt}, | |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}, | |
], | |
} | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image = Image.open(BytesIO(base64.b64decode(image_base64))) | |
inputs = processor( | |
text=[text], | |
images=[image], | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
output = model.generate( | |
**inputs, | |
temperature=0.8, | |
max_new_tokens=5096, | |
num_return_sequences=1, | |
do_sample=True, | |
) | |
prompt_len = inputs["input_ids"].shape[1] | |
new_tokens = output[:, prompt_len:].detach().cpu() | |
decoded = "[No output generated]" | |
if new_tokens.shape[1] > 0: | |
decoded_list = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) | |
raw_output = decoded_list[0].strip() if decoded_list else "[No output generated]" | |
try: | |
parsed = json.loads(raw_output) | |
decoded = parsed.get("natural_text", raw_output) | |
except json.JSONDecodeError: | |
decoded = raw_output | |
except Exception as e: | |
decoded = f"[Error on page {page_num}: {e}]" | |
print(f"Decoded content for page {page_num}: {decoded}") | |
cleaned_text = clean_page_headers(decoded) | |
if page_num in toc_by_page: | |
cleaned_text = replace_headers_in_text(cleaned_text, toc_by_page[page_num]) | |
all_text += cleaned_text + "\n\n" | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", dir="/tmp", mode="w", encoding="utf-8") as tmp: | |
tmp.write(all_text) | |
return tmp.name | |
iface = gr.Interface( | |
fn=process_pdf_to_markdown, | |
inputs=[ | |
gr.File(label="Upload PDF", file_types=[".pdf"]), | |
gr.Textbox(label="Markdown Title"), | |
gr.Textbox(label="Author(s)") | |
], | |
outputs=gr.File(label="Download Markdown .txt"), | |
title="PDF to Markdown Converter (for Calibre)", | |
description="Extracts text with structure and outputs it as Markdown in a .txt file compatible with Calibre.", | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
iface.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=True, | |
debug=True, | |
allowed_paths=["/tmp"] | |
) | |