Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,139 @@
|
|
1 |
-
import
|
2 |
-
import
|
|
|
|
|
|
|
|
|
3 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
import gradio as gr
|
6 |
from ebooklib import epub
|
7 |
-
from olmocr import process_pdf # your forked olmocr model
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
|
|
14 |
book = epub.EpubBook()
|
15 |
book.set_identifier("id123456")
|
16 |
book.set_title(title)
|
17 |
-
book.set_language("en")
|
18 |
book.add_author(author)
|
19 |
|
20 |
chapters = []
|
21 |
|
22 |
-
for i
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
book.add_item(chapter)
|
32 |
chapters.append(chapter)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
|
|
|
39 |
book.toc = tuple(chapters)
|
40 |
book.add_item(epub.EpubNcx())
|
41 |
book.add_item(epub.EpubNav())
|
42 |
-
book.spine = [
|
43 |
-
|
44 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".epub", dir="/tmp") as tmp:
|
45 |
-
epub.write_epub(tmp.name, book)
|
46 |
-
print(f"EPUB written to {tmp.name}")
|
47 |
-
return tmp.name
|
48 |
-
|
49 |
-
# Gradio UI
|
50 |
-
title_input = gr.Textbox(label="EPUB Title", value="Untitled")
|
51 |
-
author_input = gr.Textbox(label="Author", value="Unknown")
|
52 |
-
file_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
|
|
56 |
iface = gr.Interface(
|
57 |
fn=process_pdf_to_epub,
|
58 |
-
inputs=[
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
63 |
|
64 |
if __name__ == "__main__":
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import base64
|
4 |
+
import fitz # PyMuPDF
|
5 |
+
from io import BytesIO
|
6 |
+
from PIL import Image
|
7 |
from pathlib import Path
|
8 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
9 |
+
|
10 |
+
from olmocr.data.renderpdf import render_pdf_to_base64png
|
11 |
+
from olmocr.prompts.anchor import get_anchor_text
|
12 |
|
|
|
13 |
from ebooklib import epub
|
|
|
14 |
|
15 |
+
# Load model and processor
|
16 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
17 |
+
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16
|
18 |
+
).eval()
|
19 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
model.to(device)
|
22 |
+
|
23 |
+
def process_pdf_to_epub(pdf_file, title, author):
|
24 |
+
pdf_path = pdf_file.name
|
25 |
+
doc = fitz.open(pdf_path)
|
26 |
+
num_pages = len(doc)
|
27 |
|
28 |
+
# Create EPUB book
|
29 |
book = epub.EpubBook()
|
30 |
book.set_identifier("id123456")
|
31 |
book.set_title(title)
|
|
|
32 |
book.add_author(author)
|
33 |
|
34 |
chapters = []
|
35 |
|
36 |
+
for i in range(num_pages):
|
37 |
+
page_num = i + 1
|
38 |
+
print(f"Processing page {page_num}...")
|
39 |
+
|
40 |
+
try:
|
41 |
+
# Render page to base64 image
|
42 |
+
image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024)
|
43 |
+
anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000)
|
44 |
+
print(f"Anchor text for page {page_num}: {anchor_text}")
|
45 |
+
|
46 |
+
# New prompt format
|
47 |
+
prompt = (
|
48 |
+
"Below is the image of one page of a document, as well as some raw textual content that was previously "
|
49 |
+
"extracted for it. Just return the plain text representation of this document as if you were reading it naturally.\n"
|
50 |
+
"Do not hallucinate.\n"
|
51 |
+
"RAW_TEXT_START\n"
|
52 |
+
f"{anchor_text}\n"
|
53 |
+
"RAW_TEXT_END"
|
54 |
+
)
|
55 |
+
|
56 |
+
messages = [
|
57 |
+
{
|
58 |
+
"role": "user",
|
59 |
+
"content": [
|
60 |
+
{"type": "text", "text": prompt},
|
61 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
|
62 |
+
],
|
63 |
+
}
|
64 |
+
]
|
65 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
66 |
+
image = Image.open(BytesIO(base64.b64decode(image_base64)))
|
67 |
+
|
68 |
+
inputs = processor(
|
69 |
+
text=[text],
|
70 |
+
images=[image],
|
71 |
+
padding=True,
|
72 |
+
return_tensors="pt",
|
73 |
+
)
|
74 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
75 |
|
76 |
+
output = model.generate(
|
77 |
+
**inputs,
|
78 |
+
temperature=0.8,
|
79 |
+
max_new_tokens=512,
|
80 |
+
num_return_sequences=1,
|
81 |
+
do_sample=True,
|
82 |
+
)
|
83 |
+
|
84 |
+
prompt_length = inputs["input_ids"].shape[1]
|
85 |
+
new_tokens = output[:, prompt_length:].detach().cpu()
|
86 |
+
|
87 |
+
decoded = "[No output generated]"
|
88 |
+
if new_tokens is not None and new_tokens.shape[1] > 0:
|
89 |
+
try:
|
90 |
+
decoded_list = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
91 |
+
decoded = decoded_list[0].strip() if decoded_list else "[No output generated]"
|
92 |
+
except Exception as decode_error:
|
93 |
+
decoded = f"[Decoding error on page {page_num}: {str(decode_error)}]"
|
94 |
+
else:
|
95 |
+
decoded = "[Model returned no new tokens]"
|
96 |
+
|
97 |
+
except Exception as processing_error:
|
98 |
+
decoded = f"[Processing error on page {page_num}: {str(processing_error)}]"
|
99 |
+
|
100 |
+
print(f"Decoded content for page {page_num}: {decoded}")
|
101 |
+
|
102 |
+
# Create chapter
|
103 |
+
chapter = epub.EpubHtml(title=f"Page {page_num}", file_name=f"page_{page_num}.xhtml", lang="en")
|
104 |
+
chapter.content = f"<h1>Page {page_num}</h1><p>{decoded}</p>"
|
105 |
book.add_item(chapter)
|
106 |
chapters.append(chapter)
|
107 |
|
108 |
+
# Save cover image from page 1
|
109 |
+
if page_num == 1:
|
110 |
+
cover_image = Image.open(BytesIO(base64.b64decode(image_base64)))
|
111 |
+
cover_io = BytesIO()
|
112 |
+
cover_image.save(cover_io, format='PNG')
|
113 |
+
book.set_cover("cover.png", cover_io.getvalue())
|
114 |
|
115 |
+
# Assemble EPUB
|
116 |
book.toc = tuple(chapters)
|
117 |
book.add_item(epub.EpubNcx())
|
118 |
book.add_item(epub.EpubNav())
|
119 |
+
book.spine = ['nav'] + chapters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
output_path = "/tmp/output.epub"
|
122 |
+
epub.write_epub(output_path, book)
|
123 |
+
return output_path
|
124 |
|
125 |
+
# Gradio Interface
|
126 |
iface = gr.Interface(
|
127 |
fn=process_pdf_to_epub,
|
128 |
+
inputs=[
|
129 |
+
gr.File(label="Upload PDF", file_types=[".pdf"]),
|
130 |
+
gr.Textbox(label="EPUB Title"),
|
131 |
+
gr.Textbox(label="Author(s)")
|
132 |
+
],
|
133 |
+
outputs=gr.File(label="Download EPUB"),
|
134 |
+
title="PDF to EPUB Converter (with olmOCR)",
|
135 |
+
description="Uploads a PDF, extracts text from each page with vision + prompt, and builds an EPUB using the outputs. Sets the first page as cover.",
|
136 |
+
allow_flagging="never"
|
137 |
)
|
138 |
|
139 |
if __name__ == "__main__":
|