Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,30 @@
|
|
1 |
-
import
|
2 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers"
|
3 |
import torch
|
4 |
-
import
|
5 |
from io import BytesIO
|
6 |
from PIL import Image
|
7 |
-
import gradio as gr
|
8 |
-
from ebooklib import epub
|
9 |
-
|
10 |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
11 |
from olmocr.data.renderpdf import render_pdf_to_base64png
|
12 |
from olmocr.prompts import build_finetuning_prompt
|
13 |
from olmocr.prompts.anchor import get_anchor_text
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
from PyPDF2 import PdfReader
|
16 |
-
|
17 |
-
# Set a writable cache directory for HF
|
18 |
-
os.environ['HF_HOME'] = '/tmp/.cache/huggingface'
|
19 |
-
|
20 |
-
# Load processor and model
|
21 |
-
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
22 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
23 |
-
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16
|
24 |
-
).eval()
|
25 |
|
|
|
26 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
-
model.
|
|
|
|
|
|
|
28 |
|
29 |
-
def extract_text_from_page(pdf_path, page_num):
|
30 |
-
# Render image
|
31 |
-
image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024)
|
32 |
-
image = Image.open(BytesIO(base64.b64decode(image_base64)))
|
33 |
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
prompt = build_finetuning_prompt(anchor_text)
|
37 |
|
38 |
messages = [
|
@@ -40,84 +32,85 @@ def extract_text_from_page(pdf_path, page_num):
|
|
40 |
"role": "user",
|
41 |
"content": [
|
42 |
{"type": "text", "text": prompt},
|
43 |
-
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{
|
44 |
],
|
45 |
}
|
46 |
]
|
47 |
|
48 |
-
|
49 |
-
|
|
|
50 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
51 |
|
52 |
with torch.no_grad():
|
53 |
-
|
54 |
**inputs,
|
55 |
temperature=0.8,
|
56 |
-
max_new_tokens=
|
57 |
-
num_return_sequences=1,
|
58 |
do_sample=True,
|
59 |
)
|
60 |
|
61 |
prompt_len = inputs["input_ids"].shape[1]
|
62 |
-
new_tokens =
|
63 |
-
decoded = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
64 |
-
return decoded
|
65 |
|
66 |
-
def process_pdf(file, title="Extracted PDF", author="olmOCR", language="en"):
|
67 |
-
file_path = file.name
|
68 |
-
reader = PdfReader(file_path)
|
69 |
-
num_pages = len(reader.pages)
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
all_text.append(f"<h2>Page {page}</h2><p>{text}</p>")
|
77 |
-
if cover_image and not cover_image_data:
|
78 |
-
cover_image_data = cover_image # base64
|
79 |
|
80 |
-
#
|
81 |
book = epub.EpubBook()
|
82 |
-
book.set_identifier("id123456")
|
83 |
book.set_title(title)
|
84 |
-
book.set_language(language)
|
85 |
book.add_author(author)
|
|
|
86 |
|
87 |
-
#
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
book.add_item(epub.
|
99 |
-
book.add_item(epub.
|
100 |
-
|
|
|
101 |
|
102 |
-
epub_path
|
103 |
-
|
104 |
|
|
|
|
|
|
|
105 |
return epub_path
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
fn=
|
110 |
inputs=[
|
111 |
-
gr.File(label="Upload PDF"),
|
112 |
-
gr.Textbox(
|
113 |
-
gr.Textbox(
|
114 |
-
gr.Textbox(
|
115 |
],
|
116 |
outputs=gr.File(label="Download EPUB"),
|
117 |
-
title="
|
118 |
-
description="
|
119 |
-
allow_flagging="never"
|
120 |
)
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
-
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
from PyPDF2 import PdfReader
|
4 |
from io import BytesIO
|
5 |
from PIL import Image
|
|
|
|
|
|
|
6 |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
7 |
from olmocr.data.renderpdf import render_pdf_to_base64png
|
8 |
from olmocr.prompts import build_finetuning_prompt
|
9 |
from olmocr.prompts.anchor import get_anchor_text
|
10 |
+
from ebooklib import epub
|
11 |
+
import base64
|
12 |
+
import tempfile
|
13 |
+
import os
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Load model
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
19 |
+
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
20 |
+
).eval().to(device)
|
21 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
22 |
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
def ocr_page(pdf_path, page_num):
|
25 |
+
# Render page to base64 PNG
|
26 |
+
image_b64 = render_pdf_to_base64png(pdf_path, page_num + 1, target_longest_image_dim=1024)
|
27 |
+
anchor_text = get_anchor_text(pdf_path, page_num + 1, pdf_engine="pdfreport", target_length=4000)
|
28 |
prompt = build_finetuning_prompt(anchor_text)
|
29 |
|
30 |
messages = [
|
|
|
32 |
"role": "user",
|
33 |
"content": [
|
34 |
{"type": "text", "text": prompt},
|
35 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_b64}"}},
|
36 |
],
|
37 |
}
|
38 |
]
|
39 |
|
40 |
+
prompt_text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
41 |
+
main_image = Image.open(BytesIO(base64.b64decode(image_b64)))
|
42 |
+
inputs = processor(text=[prompt_text], images=[main_image], return_tensors="pt", padding=True)
|
43 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
44 |
|
45 |
with torch.no_grad():
|
46 |
+
outputs = model.generate(
|
47 |
**inputs,
|
48 |
temperature=0.8,
|
49 |
+
max_new_tokens=1024,
|
|
|
50 |
do_sample=True,
|
51 |
)
|
52 |
|
53 |
prompt_len = inputs["input_ids"].shape[1]
|
54 |
+
new_tokens = outputs[:, prompt_len:]
|
55 |
+
decoded = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
56 |
+
return decoded[0] if decoded else ""
|
57 |
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
def convert_pdf_to_epub(pdf_file, title, author, language):
|
60 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_pdf:
|
61 |
+
tmp_pdf.write(pdf_file.read())
|
62 |
+
tmp_pdf_path = tmp_pdf.name
|
63 |
|
64 |
+
reader = PdfReader(tmp_pdf_path)
|
65 |
+
num_pages = len(reader.pages)
|
|
|
|
|
|
|
66 |
|
67 |
+
# Create EPUB book
|
68 |
book = epub.EpubBook()
|
|
|
69 |
book.set_title(title)
|
|
|
70 |
book.add_author(author)
|
71 |
+
book.set_language(language)
|
72 |
|
73 |
+
# Use first page as cover
|
74 |
+
cover_image_b64 = render_pdf_to_base64png(tmp_pdf_path, 1, target_longest_image_dim=1024)
|
75 |
+
cover_image_bytes = base64.b64decode(cover_image_b64)
|
76 |
+
book.set_cover("cover.jpg", cover_image_bytes)
|
77 |
|
78 |
+
# OCR and add pages
|
79 |
+
for i in range(num_pages):
|
80 |
+
text = ocr_page(tmp_pdf_path, i)
|
81 |
+
chapter = epub.EpubHtml(title=f"Page {i+1}", file_name=f"page_{i+1}.xhtml", lang=language)
|
82 |
+
chapter.content = f"<h1>Page {i+1}</h1><p>{text}</p>"
|
83 |
+
book.add_item(chapter)
|
84 |
+
book.spine.append(chapter)
|
85 |
|
86 |
+
# Finalize EPUB
|
87 |
+
book.add_item(epub.EpubNcx())
|
88 |
+
book.add_item(epub.EpubNav())
|
89 |
+
epub_path = os.path.join(tempfile.gettempdir(), "output.epub")
|
90 |
+
epub.write_epub(epub_path, book, {})
|
91 |
|
92 |
+
with open(epub_path, "rb") as f:
|
93 |
+
return epub_path, f.read()
|
94 |
|
95 |
+
|
96 |
+
def interface_fn(pdf, title, author, language):
|
97 |
+
epub_path, epub_bytes = convert_pdf_to_epub(pdf, title, author, language)
|
98 |
return epub_path
|
99 |
|
100 |
+
|
101 |
+
demo = gr.Interface(
|
102 |
+
fn=interface_fn,
|
103 |
inputs=[
|
104 |
+
gr.File(label="Upload PDF", file_types=[".pdf"]),
|
105 |
+
gr.Textbox(label="EPUB Title", placeholder="e.g. Understanding AI"),
|
106 |
+
gr.Textbox(label="Author", placeholder="e.g. Allen AI"),
|
107 |
+
gr.Textbox(label="Language", placeholder="e.g. en", value="en"),
|
108 |
],
|
109 |
outputs=gr.File(label="Download EPUB"),
|
110 |
+
title="PDF to EPUB Converter (olmOCR)",
|
111 |
+
description="Upload a PDF to convert it into a structured EPUB. The first page is used as the cover. OCR is performed with the olmOCR model.",
|
112 |
+
allow_flagging="never",
|
113 |
)
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
+
demo.launch()
|