import gradio as gr import torch import base64 import fitz # PyMuPDF from io import BytesIO from PIL import Image from pathlib import Path from transformers import AutoProcessor, Qwen2VLForConditionalGeneration from olmocr.data.renderpdf import render_pdf_to_base64png from olmocr.prompts import build_finetuning_prompt from olmocr.prompts.anchor import get_anchor_text from ebooklib import epub # Load model and processor model = Qwen2VLForConditionalGeneration.from_pretrained( "allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16 ).eval() processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def process_pdf_to_epub(pdf_file, title, author): pdf_path = pdf_file.name doc = fitz.open(pdf_path) num_pages = len(doc) # Create EPUB book book = epub.EpubBook() book.set_identifier("id123456") book.set_title(title) book.add_author(author) chapters = [] for i in range(num_pages): page_num = i + 1 try: # Render page to base64 image image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024) anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000) prompt = build_finetuning_prompt(anchor_text) # Format prompt messages = [ { "role": "user", "content": [ {"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}, ], } ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image = Image.open(BytesIO(base64.b64decode(image_base64))) inputs = processor( text=[text], images=[image], padding=True, return_tensors="pt", ) inputs = {k: v.to(device) for k, v in inputs.items()} output = model.generate( **inputs, temperature=0.8, max_new_tokens=512, num_return_sequences=1, do_sample=True, ) prompt_length = inputs["input_ids"].shape[1] new_tokens = output[:, prompt_length:] try: decoded_list = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) decoded = decoded_list[0].strip() if decoded_list else "[No output generated]" except Exception as decode_error: decoded = f"[Decoding error on page {page_num}: {str(decode_error)}]" except Exception as e: decoded = f"[Error processing page {page_num}: {str(e)}]" # Create chapter chapter = epub.EpubHtml(title=f"Page {page_num}", file_name=f"page_{page_num}.xhtml", lang="en") chapter.content = f"

Page {page_num}

{decoded}

" book.add_item(chapter) chapters.append(chapter) # Save cover image from page 1 if page_num == 1: cover_image = Image.open(BytesIO(base64.b64decode(image_base64))) cover_io = BytesIO() cover_image.save(cover_io, format='PNG') book.set_cover("cover.png", cover_io.getvalue()) # Assemble EPUB book.toc = tuple(chapters) book.add_item(epub.EpubNcx()) book.add_item(epub.EpubNav()) book.spine = ['nav'] + chapters output_path = "/tmp/output.epub" epub.write_epub(output_path, book) return output_path # Gradio Interface iface = gr.Interface( fn=process_pdf_to_epub, inputs=[ gr.File(label="Upload PDF", file_types=[".pdf"]), gr.Textbox(label="EPUB Title"), gr.Textbox(label="Author(s)") ], outputs=gr.File(label="Download EPUB"), title="PDF to EPUB Converter (with olmOCR)", description="Uploads a PDF, extracts text from each page with vision + prompt, and builds an EPUB using the outputs. Sets the first page as cover.", allow_flagging="never" # Add this line to avoid the flagged directory issue ) if __name__ == "__main__": iface.launch( server_name="0.0.0.0", # Required to make app publicly accessible server_port=7860, # Can be changed if needed share=True, # Optional: creates a public Gradio link if supported debug=True, # Optional: helpful if you're troubleshooting allowed_paths=["/tmp"] # Optional: makes it explicit that Gradio can write here )