import gradio as gr from bald_face import BaldFace bald = BaldFace() def predict(image): return bald.make(image) footer = r"""
Demo for Lightweight OpenPose
""" with gr.Blocks(title="") as app: gr.HTML("

") gr.HTML("

") with gr.Row(equal_height=False): with gr.Column(): input_img = gr.Image(type="numpy", label="Input image") run_btn = gr.Button(variant="primary") with gr.Column(): output_img = gr.Image(type="pil", label="Output image") gr.ClearButton(components=[input_img, output_img], variant="stop") run_btn.click(predict, [input_img], [output_img]) with gr.Row(): blobs = [[f"examples/{x:02d}.jpg"] for x in range(1, 5)] examples = gr.Dataset(components=[input_img], samples=blobs) examples.click(lambda x: x[0], [examples], [input_img]) with gr.Row(): gr.HTML(footer) app.launch(share=False, debug=True, show_error=True) app.queue()