Spaces:
Running
Running
############################################################################# | |
# | |
# Source from: | |
# https://www.tensorflow.org/hub/tutorials/movenet | |
# | |
# | |
############################################################################# | |
import PIL.Image | |
import PIL.ImageOps | |
import numpy as np | |
import tensorflow as tf | |
from PIL import ImageDraw | |
from PIL import ImageFont | |
from huggingface_hub import snapshot_download | |
# Dictionary that maps from joint names to keypoint indices. | |
KEYPOINT_DICT = { | |
'nose': 0, | |
'left_eye': 1, | |
'right_eye': 2, | |
'left_ear': 3, | |
'right_ear': 4, | |
'left_shoulder': 5, | |
'right_shoulder': 6, | |
'left_elbow': 7, | |
'right_elbow': 8, | |
'left_wrist': 9, | |
'right_wrist': 10, | |
'left_hip': 11, | |
'right_hip': 12, | |
'left_knee': 13, | |
'right_knee': 14, | |
'left_ankle': 15, | |
'right_ankle': 16 | |
} | |
KEYPOINT_EDGE_INDS_TO_COLOR = { | |
(0, 1): 'Magenta', | |
(0, 2): 'Cyan', | |
(1, 3): 'Magenta', | |
(2, 4): 'Cyan', | |
(0, 5): 'Magenta', | |
(0, 6): 'Cyan', | |
(5, 7): 'Magenta', | |
(7, 9): 'Magenta', | |
(6, 8): 'Cyan', | |
(8, 10): 'Cyan', | |
(5, 6): 'Yellow', | |
(5, 11): 'Magenta', | |
(6, 12): 'Cyan', | |
(11, 12): 'Yellow', | |
(11, 13): 'Magenta', | |
(13, 15): 'Magenta', | |
(12, 14): 'Cyan', | |
(14, 16): 'Cyan' | |
} | |
def process_keypoints(keypoints_with_scores, height, width, threshold=0.11): | |
"""Returns high confidence keypoints and edges for visualization. | |
Args: | |
keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing | |
the keypoint coordinates and scores returned from the MoveNet model. | |
height: height of the image in pixels. | |
width: width of the image in pixels. | |
threshold: minimum confidence score for a keypoint to be | |
visualized. | |
Returns: | |
A (joints, bones, colors) containing: | |
* the coordinates of all keypoints of all detected entities; | |
* the coordinates of all skeleton edges of all detected entities; | |
* the colors in which the edges should be plotted. | |
""" | |
keypoints_all = [] | |
keypoint_edges_all = [] | |
num_instances, _, _, _ = keypoints_with_scores.shape | |
for idx in range(num_instances): | |
kpts_x = keypoints_with_scores[0, idx, :, 1] | |
kpts_y = keypoints_with_scores[0, idx, :, 0] | |
kpts_scores = keypoints_with_scores[0, idx, :, 2] | |
kpts_dict = list(KEYPOINT_DICT.keys()) | |
kpts_absolute_xy = np.stack([kpts_dict, width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1) | |
kpts_above_thresh_absolute = kpts_absolute_xy[kpts_scores > threshold, :] | |
keypoints_all.append(kpts_above_thresh_absolute) | |
for edge_pair, color in KEYPOINT_EDGE_INDS_TO_COLOR.items(): | |
if kpts_scores[edge_pair[0]] > threshold and kpts_scores[edge_pair[1]] > threshold: | |
x_start = kpts_absolute_xy[edge_pair[0], 1] | |
y_start = kpts_absolute_xy[edge_pair[0], 2] | |
x_end = kpts_absolute_xy[edge_pair[1], 1] | |
y_end = kpts_absolute_xy[edge_pair[1], 2] | |
line_seg = np.array([[x_start, y_start], [x_end, y_end]]) | |
keypoint_edges_all.append([line_seg, color]) | |
if keypoints_all: | |
keypoints_xy = np.concatenate(keypoints_all, axis=0) | |
else: | |
keypoints_xy = np.zeros((0, 17, 2)) | |
if keypoint_edges_all: | |
edges_xy = np.stack(keypoint_edges_all, axis=0) | |
else: | |
edges_xy = np.zeros((0, 2, 2)) | |
return keypoints_xy, edges_xy | |
def draw_bones(pixmap: PIL.Image, keypoints): | |
draw = ImageDraw.Draw(pixmap) | |
joints, bones = process_keypoints(keypoints, pixmap.height, pixmap.width) | |
font = ImageFont.truetype("./Arial.ttf", 22) | |
print(joints) | |
for bone, color in bones: | |
bone = bone.astype(np.float32) | |
draw.line((*bone[0], *bone[1]), fill=color, width=4) | |
radio = 3 | |
for label, c_x, c_y in joints: | |
c_x = float(c_x) | |
c_y = float(c_y) | |
shape = [(c_x - radio, c_y - radio), (c_x + radio, c_y + radio)] | |
draw.ellipse(shape, fill="red", outline="red") | |
draw.text((c_x, c_y), label, font=font, align="left", fill="blue") | |
return joints | |
def movenet(image): | |
"""Runs detection on an input image. | |
Args: | |
image: A [1, height, width, 3] tensor represents the input image | |
pixels. Note that the height/width should already be resized and match the | |
expected input resolution of the model before passing into this function. | |
Returns: | |
A [1, 1, 17, 3] float numpy array representing the predicted keypoint | |
coordinates and scores. | |
""" | |
model_path = snapshot_download("leonelhs/movenet") | |
module = tf.saved_model.load(model_path) | |
model = module.signatures['serving_default'] | |
# SavedModel format expects tensor type of int32. | |
image = tf.cast(image, dtype=tf.int32) | |
# Run model inference. | |
outputs = model(image) | |
# Output is a [1, 1, 17, 3] tensor. | |
return outputs['output_0'].numpy() | |