Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#######################################################################################
|
2 |
+
#
|
3 |
+
# MIT License
|
4 |
+
#
|
5 |
+
# Copyright (c) [2025] [[email protected]]
|
6 |
+
#
|
7 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
8 |
+
# of this software and associated documentation files (the "Software"), to deal
|
9 |
+
# in the Software without restriction, including without limitation the rights
|
10 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
11 |
+
# copies of the Software, and to permit persons to whom the Software is
|
12 |
+
# furnished to do so, subject to the following conditions:
|
13 |
+
#
|
14 |
+
# The above copyright notice and this permission notice shall be included in all
|
15 |
+
# copies or substantial portions of the Software.
|
16 |
+
#
|
17 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
18 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
19 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
20 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
21 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
22 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
23 |
+
# SOFTWARE.
|
24 |
+
#
|
25 |
+
#######################################################################################
|
26 |
+
#
|
27 |
+
#
|
28 |
+
# Source code is based on or inspired by several projects.
|
29 |
+
# For more details and proper attribution, please refer to the following resources:
|
30 |
+
#
|
31 |
+
# - [stackoverflow] - [https://stackoverflow.com/questions/22656698/perspective-correction-in-opencv-using-python]
|
32 |
+
# - [rembg] [https://huggingface.co/spaces/leonelhs/rembg]
|
33 |
+
# - [rembg] [https://github.com/danielgatis/rembg]
|
34 |
+
# - [Chatgpt] [https://chatgpt.com/]
|
35 |
+
#
|
36 |
+
# The image is first processed by an AI service.
|
37 |
+
# This step provides a cleaner, bounded version of the image,
|
38 |
+
# because OpenCV’s edge detection is not always reliable on raw inputs.
|
39 |
+
# With the improved intermediate image, OpenCV can detect borders more consistently
|
40 |
+
# and the perspective unwrap produces better results.
|
41 |
+
|
42 |
+
|
43 |
+
import cv2
|
44 |
+
import numpy as np
|
45 |
+
import gradio as gr
|
46 |
+
from gradio_client import Client, handle_file
|
47 |
+
|
48 |
+
client = Client("leonelhs/rembg")
|
49 |
+
|
50 |
+
def unwrap(image, mask):
|
51 |
+
img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
52 |
+
gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
53 |
+
|
54 |
+
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
55 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
56 |
+
contours = sorted(contours, key=cv2.contourArea, reverse=True)
|
57 |
+
|
58 |
+
if len(contours) > 0:
|
59 |
+
cnt = contours[0]
|
60 |
+
peri = cv2.arcLength(cnt, True)
|
61 |
+
approx = cv2.approxPolyDP(cnt, 0.02 * peri, True)
|
62 |
+
|
63 |
+
if len(approx) == 4:
|
64 |
+
corners = approx.reshape(4, 2).astype(np.float32)
|
65 |
+
|
66 |
+
# Order points: top-left, top-right, bottom-right, bottom-left
|
67 |
+
rect = np.zeros((4, 2), dtype="float32")
|
68 |
+
s = corners.sum(axis=1)
|
69 |
+
rect[0] = corners[np.argmin(s)]
|
70 |
+
rect[2] = corners[np.argmax(s)]
|
71 |
+
|
72 |
+
diff = np.diff(corners, axis=1)
|
73 |
+
rect[1] = corners[np.argmin(diff)]
|
74 |
+
rect[3] = corners[np.argmax(diff)]
|
75 |
+
|
76 |
+
(tl, tr, br, bl) = rect
|
77 |
+
|
78 |
+
# Compute width & height
|
79 |
+
widthA = np.linalg.norm(br - bl)
|
80 |
+
widthB = np.linalg.norm(tr - tl)
|
81 |
+
maxWidth = int(max(widthA, widthB))
|
82 |
+
|
83 |
+
heightA = np.linalg.norm(tr - br)
|
84 |
+
heightB = np.linalg.norm(tl - bl)
|
85 |
+
maxHeight = int(max(heightA, heightB))
|
86 |
+
|
87 |
+
dst = np.array([
|
88 |
+
[0, 0],
|
89 |
+
[maxWidth - 1, 0],
|
90 |
+
[maxWidth - 1, maxHeight - 1],
|
91 |
+
[0, maxHeight - 1]
|
92 |
+
], dtype="float32")
|
93 |
+
|
94 |
+
# Perspective transform
|
95 |
+
M = cv2.getPerspectiveTransform(rect, dst)
|
96 |
+
warped = cv2.warpPerspective(img, M, (maxWidth, maxHeight))
|
97 |
+
|
98 |
+
return cv2.cvtColor(warped, cv2.COLOR_BGR2RGB), mask, corners
|
99 |
+
|
100 |
+
# fallback: return original if no rectangle
|
101 |
+
return image, mask, contours
|
102 |
+
|
103 |
+
def predict(img):
|
104 |
+
"""
|
105 |
+
Unwrap an image using AI-assisted preprocessing and OpenCV.
|
106 |
+
|
107 |
+
The algorithm first leverages an AI service to generate a cleaner,
|
108 |
+
well-bounded intermediate image. This helps OpenCV detect borders
|
109 |
+
more reliably before performing the perspective unwrap.
|
110 |
+
|
111 |
+
Parameters:
|
112 |
+
img (string): File path to the input image to be unwrapped.
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
path (string): File path to the generated, unwrapped image.
|
116 |
+
"""
|
117 |
+
|
118 |
+
# Step 1: Use an AI service to preprocess the image.
|
119 |
+
# - OpenCV can detect edges, but results are inconsistent depending on noise/lighting.
|
120 |
+
# - The AI model generates a cleaner, well-bounded intermediate image.
|
121 |
+
crop, mask = client.predict(image=handle_file(img), session="U2NET", smoot=True, api_name="/predict")
|
122 |
+
|
123 |
+
# Step 2: Apply OpenCV on this intermediate image for more accurate border detection
|
124 |
+
# before performing the perspective unwrap.
|
125 |
+
crop = cv2.imread(crop)
|
126 |
+
mask = cv2.imread(mask)
|
127 |
+
return unwrap(crop, mask)
|
128 |
+
|
129 |
+
|
130 |
+
with gr.Blocks() as app:
|
131 |
+
gr.Markdown("## 🖼️ Rectangle Detection & Perspective Unwrap")
|
132 |
+
with gr.Row():
|
133 |
+
with gr.Column(scale=1):
|
134 |
+
inp = gr.Image(type="filepath", label="Upload Image")
|
135 |
+
btn_unwrap = gr.Button("📐 Perspective Unwrap")
|
136 |
+
with gr.Column(scale=2):
|
137 |
+
with gr.Row():
|
138 |
+
with gr.Column(scale=1):
|
139 |
+
out_unwrap = gr.Image(type="numpy", label="Unwrapped Rectangle")
|
140 |
+
with gr.Accordion("See intermediates", open=False):
|
141 |
+
out_mask = gr.Image(type="numpy", label="Detected Corners")
|
142 |
+
out_corners = gr.JSON(label="Corners (x,y)")
|
143 |
+
|
144 |
+
btn_unwrap.click(predict, inputs=inp, outputs=[out_unwrap, out_mask, out_corners])
|
145 |
+
|
146 |
+
app.launch(share=False, debug=True, show_error=True, mcp_server=True)
|
147 |
+
app.queue()
|
148 |
+
|