File size: 24,897 Bytes
2abc50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
# /Users/yagoairm2/Desktop/agents/final project/HF_Agents_Final_Project/app2.py
import os
import gradio as gr
import requests
import pandas as pd
import json
from typing import Dict, List, Optional, Union, Any
import re
from dataclasses import dataclass
from abc import ABC, abstractmethod
import time
import logging
from dotenv import load_dotenv
import tempfile
import io
import sys
import contextlib
from urllib.parse import urlparse
from pathlib import Path

# Configure logging
logging.basicConfig(
    level=logging.INFO, 
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
DEFAULT_FILES_DIR = "dataset"
SYSTEM_PROMPT = """
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
"""

# --- Tool Interface ---
class Tool(ABC):
    """Base class for all tools that agent can use."""
    name: str
    description: str
    
    @abstractmethod
    def run(self, **kwargs) -> Dict[str, Any]:
        """Execute the tool with the provided arguments."""
        pass

# --- Tools Implementation ---
class WebSearchTool(Tool):
    """Tool for performing web searches."""
    name = "web_search"
    description = "Search the web for information about a topic."
    
    def __init__(self):
        # Initialize any search API clients or session objects here
        pass
    
    def run(self, query: str) -> Dict[str, Any]:
        """
        Perform a web search with the given query.
        
        Args:
            query: The search query
            
        Returns:
            Dict with search results
        """
        # In a real implementation, this would use a search API
        logger.info(f"WebSearchTool: Searching for '{query}'")
        
        # Mock implementation - would be replaced with real search API
        # You'd implement this with a proper search API like SerpAPI, Google Custom Search, etc.
        time.sleep(1)  # Simulate network delay
        
        return {
            "status": "success",
            "results": [
                {"title": f"Mock result for {query}", "snippet": "This is a placeholder for search results.", "url": "https://example.com"}
            ]
        }

class FileReaderTool(Tool):
    """Tool for reading and processing different types of files."""
    name = "file_reader"
    description = "Read and process files of various formats."
    
    def __init__(self, files_dir: str = DEFAULT_FILES_DIR):
        self.files_dir = files_dir
    
    def run(self, task_id: str, file_name: str) -> Dict[str, Any]:
        """
        Read and process a file associated with a task.
        
        Args:
            task_id: The task identifier
            file_name: Name of the file to process
            
        Returns:
            Dict with file content or error message
        """
        try:
            # First, try to find the file locally
            file_path = os.path.join(self.files_dir, task_id, file_name)
            
            if not os.path.exists(file_path):
                # If file doesn't exist locally, try to download it
                file_path = self._download_file(task_id, file_name)
                
            # Process the file based on its extension
            file_ext = os.path.splitext(file_name)[1].lower()
            
            if file_ext in ['.txt', '.md', '.py', '.json', '.csv']:
                with open(file_path, 'r', encoding='utf-8') as f:
                    content = f.read()
                return {"status": "success", "content": content, "file_type": "text"}
                
            elif file_ext in ['.png', '.jpg', '.jpeg']:
                # For images, we'd use a vision model in the full implementation
                return {"status": "success", "content": f"Image file: {file_path}", "file_type": "image"}
                
            elif file_ext in ['.mp3', '.wav', '.ogg']:
                # For audio, we'd use a speech-to-text model in the full implementation
                return {"status": "success", "content": f"Audio file: {file_path}", "file_type": "audio"}
                
            elif file_ext in ['.xlsx', '.xls']:
                # For Excel files, we'd use pandas in the full implementation
                return {"status": "success", "content": f"Excel file: {file_path}", "file_type": "spreadsheet"}
                
            else:
                return {"status": "error", "error": f"Unsupported file type: {file_ext}"}
                
        except Exception as e:
            logger.error(f"Error processing file {file_name}: {e}")
            return {"status": "error", "error": str(e)}
    
    def _download_file(self, task_id: str, file_name: str) -> str:
        """Download a file from the API and save it locally."""
        api_url = f"{DEFAULT_API_URL}/files/{task_id}"
        
        logger.info(f"Downloading file for task {task_id}")
        response = requests.get(api_url, timeout=30)
        
        if response.status_code != 200:
            raise Exception(f"Failed to download file: {response.status_code}")
        
        # Create directory if it doesn't exist
        os.makedirs(os.path.join(self.files_dir, task_id), exist_ok=True)
        
        # Save file
        file_path = os.path.join(self.files_dir, task_id, file_name)
        with open(file_path, 'wb') as f:
            f.write(response.content)
            
        logger.info(f"File saved to {file_path}")
        return file_path

class CodeInterpreterTool(Tool):
    """Tool for executing Python code safely."""
    name = "code_interpreter"
    description = "Execute Python code and return the result."
    
    def run(self, code: str) -> Dict[str, Any]:
        """
        Execute Python code and capture output.
        
        Args:
            code: The Python code to execute
            
        Returns:
            Dict with execution results
        """
        logger.info("Running code interpreter")
        
        output = io.StringIO()
        error = io.StringIO()
        
        try:
            # Capture stdout and stderr
            with contextlib.redirect_stdout(output), contextlib.redirect_stderr(error):
                # Execute the code in a restricted environment
                exec_globals = {"__builtins__": {}}
                
                # Add safe modules to globals
                for safe_module in ["math", "random", "datetime", "re"]:
                    try:
                        exec_globals[safe_module] = __import__(safe_module)
                    except ImportError:
                        pass
                
                # Execute the code
                exec(code, exec_globals)
                
            return {
                "status": "success",
                "stdout": output.getvalue(),
                "stderr": error.getvalue()
            }
            
        except Exception as e:
            return {
                "status": "error",
                "error": str(e),
                "stdout": output.getvalue(),
                "stderr": error.getvalue()
            }

# --- LLM Interaction Module ---
class LLMModule:
    """Module for interacting with an LLM."""
    
    def __init__(self, model_name: str = "Meta-Llama-3-8B-Instruct.Q4_0.gguf"):
        """Initialize the LLM module with a specified model."""
        self.model_name = model_name
        try:
            from gpt4all import GPT4All
            logger.info(f"Initializing GPT4All model: {model_name}")
            self.model = GPT4All(model_name, allow_download=True)
            logger.info("GPT4All model initialized successfully")
            self.use_mock = False
        except Exception as e:
            logger.warning(f"Failed to initialize GPT4All model: {e}")
            logger.warning("Using mock responses instead")
            self.use_mock = True
        
    def generate(self, prompt: str, system_prompt: str = None) -> str:
        """
        Generate text using the LLM.
        
        Args:
            prompt: The user prompt
            system_prompt: Optional system prompt
            
        Returns:
            Generated text
        """
        logger.info(f"LLM: Generating response for prompt (first 50 chars): {prompt[:50]}...")
        
        if self.use_mock:
            # Fall back to mock response if model initialization failed
            logger.warning("Using mock response")
            response = f"This is a mock LLM response. I'm simulating thinking about: {prompt[:30]}...\n\nFINAL ANSWER: Mock answer"
            return response
        
        try:
            # Combine system prompt and user prompt if system prompt is provided
            full_prompt = prompt
            if system_prompt:
                full_prompt = f"{system_prompt}\n\n{prompt}"
                
            # Generate response using GPT4All
            with self.model.chat_session():
                response = self.model.generate(full_prompt, max_tokens=1024, temp=0.7)
                
            logger.info(f"LLM response (first 50 chars): {response[:50]}...")
            return response
            
        except Exception as e:
            logger.error(f"Error generating response: {e}")
            # Fall back to mock response if generation fails
            response = f"Error generating LLM response. Falling back to mock response.\n\nFINAL ANSWER: Error occurred"
            return response
        
    def extract_final_answer(self, text: str) -> str:
        """Extract the final answer from LLM output using regex."""
        match = re.search(r"FINAL ANSWER:\s*(.*?)(?:\n|$)", text, re.IGNORECASE)
        if match:
            return match.group(1).strip()
        return text.strip()

# --- GAIA Agent Implementation ---
class GAIAAgent:
    """
    Agent designed to answer questions from the GAIA benchmark.
    
    This agent analyzes questions, selects appropriate tools, and generates answers.
    """
    
    def __init__(self):
        """Initialize the GAIA agent with its tools and LLM."""
        logger.info("Initializing GAIA Agent")
        
        # Initialize LLM
        self.llm = LLMModule()
        
        # Initialize tools
        self.tools = {
            "web_search": WebSearchTool(),
            "file_reader": FileReaderTool(),
            "code_interpreter": CodeInterpreterTool()
        }
    
    def __call__(self, question: str) -> str:
        """
        Answer a question using the agent's tools and reasoning capabilities.
        
        Args:
            question: The question to answer
            
        Returns:
            The agent's answer
        """
        logger.info(f"Agent received question: {question[:100]}...")
        
        # Step 1: Analyze the question to determine the approach
        plan = self._plan_approach(question)
        
        # Step 2: Execute the plan using tools if needed
        tool_results = self._execute_plan(plan, question)
        
        # Step 3: Generate the final answer
        answer = self._generate_answer(question, plan, tool_results)
        
        logger.info(f"Agent returning answer: {answer}")
        return answer
    
    def _plan_approach(self, question: str) -> Dict[str, Any]:
        """
        Analyze the question and plan how to answer it.
        
        Args:
            question: The question to analyze
            
        Returns:
            Dict with the plan details
        """
        # In a full implementation, this would use the LLM to analyze the question
        # and determine what tools are needed
        
        # For now, using a simple keyword-based approach
        plan = {
            "tools_needed": [],
            "reasoning": "Determining how to approach this question..."
        }
        
        # Check for mentions of files
        file_pattern = r"file[:\s]+([^\s.,?!]+)"
        file_match = re.search(file_pattern, question, re.IGNORECASE)
        if file_match:
            plan["tools_needed"].append("file_reader")
            plan["file_name"] = file_match.group(1)
        
        # Check for mentions of websites, URLs, or internet searches
        if any(term in question.lower() for term in ["website", "url", "search", "internet", "online", "web", "wikipedia"]):
            plan["tools_needed"].append("web_search")
        
        # Check for code execution needs
        if any(term in question.lower() for term in ["code", "python", "execute", "run", "script", "program"]):
            plan["tools_needed"].append("code_interpreter")
        
        return plan
    
    def _execute_plan(self, plan: Dict[str, Any], question: str) -> Dict[str, Any]:
        """
        Execute the plan using the appropriate tools.
        
        Args:
            plan: The plan created by _plan_approach
            question: The original question
            
        Returns:
            Dict with results from tool executions
        """
        results = {}
        
        for tool_name in plan.get("tools_needed", []):
            if tool_name in self.tools:
                tool = self.tools[tool_name]
                
                if tool_name == "web_search":
                    # Extract search terms from the question
                    search_query = question  # In a full implementation, you'd extract key terms
                    results[tool_name] = tool.run(query=search_query)
                    
                elif tool_name == "file_reader" and "file_name" in plan:
                    # In a full implementation, you'd extract task_id from context
                    task_id = "sample_task_id"  
                    file_name = plan["file_name"]
                    results[tool_name] = tool.run(task_id=task_id, file_name=file_name)
                    
                elif tool_name == "code_interpreter" and "code" in plan:
                    code = plan["code"]
                    results[tool_name] = tool.run(code=code)
        
        return results
    
    def _generate_answer(self, question: str, plan: Dict[str, Any], tool_results: Dict[str, Any]) -> str:
        """
        Generate the final answer based on the question, plan, and tool results.
        
        Args:
            question: The original question
            plan: The plan that was executed
            tool_results: Results from tool executions
            
        Returns:
            The final answer
        """
        # Construct a prompt for the LLM that includes the question, tool results, and 
        # instructions to format the answer properly
        
        prompt_parts = [
            f"Question: {question}\n\n",
            "I need to answer this question. Here's what I know:\n\n"
        ]
        
        # Add tool results to the prompt
        for tool_name, result in tool_results.items():
            prompt_parts.append(f"Results from {tool_name}:\n{json.dumps(result, indent=2)}\n\n")
        
        prompt_parts.append(
            "Based on the above information, answer the question. "
            "Remember to provide your reasoning first, then clearly state your final answer "
            "in the format: FINAL ANSWER: [your concise answer]"
        )
        
        prompt = "".join(prompt_parts)
        
        # Get response from LLM
        llm_response = self.llm.generate(prompt, system_prompt=SYSTEM_PROMPT)
        
        # Extract the final answer
        final_answer = self.llm.extract_final_answer(llm_response)
        
        return final_answer

# --- Runner Function for Gradio Interface ---
def run_and_submit_all(profile: gr.OAuthProfile | None, test_username: str = ""):
    """
    Fetches all questions, runs the GAIA Agent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")  # Get the SPACE_ID for sending link to the code

    # Check if we're using a test username (for local development)
    if test_username:
        username = test_username
        print(f"Using test username: {username}")
    elif profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button or provide a test username.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = GAIAAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
        
    # In the case of an app running as a Hugging Face space, this link points toward your codebase
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("Question")  # Note: Capital 'Q' in the JSON file
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or Question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# GAIA Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the GAIA agent, submit answers, and see the score.

        This agent is capable of:
        - Performing web searches for information
        - Processing various file types (text, code, images, audio, etc.)
        - Executing code safely for computational questions
        - Reasoning through complex multi-step problems

        The agent will automatically select the appropriate tools based on the question.
        """
    )

    with gr.Row():
        login_button = gr.LoginButton()
        test_username = gr.Textbox(label="Or enter test username for local development", placeholder="test_user")

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        inputs=[login_button, test_username],
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " GAIA Agent Starting " + "-"*30)
    
    # Check for environment variables
    load_dotenv()  # Load environment variables from .env file if it exists
    
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" GAIA Agent Starting ")) + "\n")

    print("Launching Gradio Interface for GAIA Agent Evaluation...")
    # When running locally, disable OAuth to avoid login issues
    is_local = not (space_host_startup or space_id_startup)
    if is_local:
        print("⚠️ Running in local mode - OAuth features will be disabled")
        demo.launch(debug=True, share=False, auth=None)
    else:
        demo.launch(debug=True, share=False)