File size: 26,105 Bytes
b1939df
 
 
 
 
 
 
 
bffd09a
 
baa65ee
 
 
 
 
b1939df
bffd09a
b1939df
 
 
baa65ee
b1939df
87aa741
baa65ee
87aa741
 
 
 
 
 
 
 
 
 
b1939df
 
 
 
 
 
 
 
 
87aa741
 
 
b1939df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87aa741
b1939df
 
 
 
 
87aa741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baa65ee
87aa741
 
 
baa65ee
87aa741
baa65ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87aa741
 
baa65ee
87aa741
baa65ee
 
 
 
 
 
 
 
 
 
87aa741
baa65ee
87aa741
 
baa65ee
87aa741
 
 
 
baa65ee
87aa741
baa65ee
87aa741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1939df
 
 
 
 
 
 
 
 
baa65ee
b1939df
 
 
 
 
 
 
 
 
 
 
baa65ee
b1939df
 
 
 
 
 
 
baa65ee
 
 
b1939df
 
 
 
baa65ee
 
b1939df
 
 
 
 
 
 
 
baa65ee
 
 
 
b1939df
 
 
 
 
 
 
baa65ee
 
 
 
 
 
 
 
b1939df
 
 
87aa741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1939df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87aa741
b1939df
87aa741
 
b1939df
 
 
87aa741
 
 
b1939df
87aa741
b1939df
 
 
 
 
 
 
 
 
 
87aa741
b1939df
87aa741
 
 
b1939df
 
 
 
 
87aa741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1939df
 
 
87aa741
b1939df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import os
import yt_dlp
import cv2
import numpy as np
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound
import tempfile
import re
import shutil
import time
from smolagents.tools import Tool
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class VideoProcessingTool(Tool):
    """
    Analyzes video content, extracting information such as frames, audio, or metadata.
    Useful for tasks like video summarization, frame extraction, transcript analysis, or content analysis.
    Has limitations with YouTube content due to platform restrictions.
    """
    name = "video_processor"
    description = "Analyzes video content from a file path or YouTube URL. Can extract frames, detect objects, get transcripts, and provide video metadata. Note: Has limitations with YouTube content due to platform restrictions."
    inputs = {
        "file_path": {"type": "string", "description": "Path to the video file or YouTube URL.", "nullable": True},
        "task": {"type": "string", "description": "Specific task to perform (e.g., 'extract_frames', 'get_transcript', 'detect_objects', 'get_metadata').", "nullable": True},
        "task_parameters": {"type": "object", "description": "Parameters for the specific task (e.g., frame extraction interval, object detection confidence).", "nullable": True}
    }
    outputs = {"result": {"type": "object", "description": "The result of the video processing task, e.g., list of frame paths, transcript text, object detection results, or metadata dictionary."}}
    output_type = "object"


    def __init__(self, model_cfg_path=None, model_weights_path=None, class_names_path=None, temp_dir_base=None, *args, **kwargs):
        """
        Initializes the VideoProcessingTool.

        Args:
            model_cfg_path (str, optional): Path to the object detection model's configuration file.
            model_weights_path (str, optional): Path to the object detection model's weights file.
            class_names_path (str, optional): Path to the file containing class names for the model.
            temp_dir_base (str, optional): Base directory for temporary files. Defaults to system temp.
        """
        super().__init__(*args, **kwargs)
        self.is_initialized = False # Will be set to True after successful setup

        if temp_dir_base:
            self.temp_dir = tempfile.mkdtemp(dir=temp_dir_base)
        else:
            self.temp_dir = tempfile.mkdtemp()
        
        self.object_detection_model = None
        self.class_names = []

        if model_cfg_path and model_weights_path and class_names_path:
            if os.path.exists(model_cfg_path) and os.path.exists(model_weights_path) and os.path.exists(class_names_path):
                try:
                    self.object_detection_model = cv2.dnn.readNetFromDarknet(model_cfg_path, model_weights_path)
                    self.object_detection_model.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
                    self.object_detection_model.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
                    with open(class_names_path, "r") as f:
                        self.class_names = [line.strip() for line in f.readlines()]
                    print("CV Model loaded successfully.")
                except Exception as e:
                    print(f"Error loading CV model: {e}. Object detection will not be available.")
                    self.object_detection_model = None
            else:
                print("Warning: One or more CV model paths are invalid. Object detection will not be available.")
        else:
            print("CV model paths not provided. Object detection will not be available.")
        
        self.is_initialized = True

    def forward(self, file_path: str = None, task: str = "get_metadata", task_parameters: dict = None):
        """
        Main entry point for video processing tasks.
        """
        if not self.is_initialized:
            return {"error": "Tool not initialized properly."}

        if task_parameters is None:
            task_parameters = {}

        # Check for YouTube URL and provide appropriate warnings
        is_youtube_url = file_path and ("youtube.com/" in file_path or "youtu.be/" in file_path)
        video_source_path = file_path

        # Special case for YouTube - check for likely restrictions before attempting download
        if is_youtube_url:
            # For transcript tasks, try direct API first without downloading
            if task == "get_transcript":
                transcript_result = self.get_youtube_transcript(file_path)
                if not transcript_result.get("error"):
                    return transcript_result
                
                # If transcript API fails with certain errors, provide more helpful response
                error_msg = transcript_result.get("error", "")
                if "Transcripts are disabled" in error_msg:
                    return {
                        "error": "This YouTube video has disabled transcripts. Consider these alternatives:",
                        "alternatives": [
                            "Please provide a different video with transcripts enabled",
                            "Upload a local video file that you have permission to use",
                            "Provide a text summary of the video content manually"
                        ]
                    }

            # For other tasks that require downloading
            logger.info(f"YouTube URL detected: {file_path}. Attempting to access content...")
            
            # Try to get metadata about the video before downloading (title, etc.)
            try:
                with yt_dlp.YoutubeDL({'quiet': True, 'no_warnings': True}) as ydl:
                    info = ydl.extract_info(file_path, download=False)
                    video_title = info.get('title', 'Unknown')
                    logger.info(f"Video title: {video_title}")
            except Exception as e:
                # YouTube is likely blocking access
                error_text = str(e).lower()
                if any(term in error_text for term in ["forbidden", "403", "blocked", "bot", "captcha", "cookie"]):
                    return {
                        "error": "YouTube access restricted. This agent cannot access this content due to platform restrictions.",
                        "alternatives": [
                            "Please upload a local video file instead",
                            "For transcripts, try providing a text summary manually",
                            "For visual analysis, consider uploading screenshots from the video"
                        ]
                    }
                return {"error": f"Failed to access video info: {str(e)}"}
            
            # Proceed with download attempt but with better handling
            download_resolution = task_parameters.get("resolution", "360p")
            download_result = self.download_video(file_path, resolution=download_resolution)
            
            if download_result.get("error"):
                error_text = download_result.get("error", "").lower()
                if any(term in error_text for term in ["forbidden", "403", "blocked", "bot", "captcha", "cookie"]):
                    return {
                        "error": "YouTube download restricted. This agent cannot download this content due to platform restrictions.",
                        "alternatives": [
                            "Please upload a local video file instead",
                            "For transcripts, try obtaining them separately or summarizing manually",
                            "For visual analysis, consider uploading key frames as images"
                        ]
                    }
                return download_result
                
            video_source_path = download_result.get("file_path")
            if not video_source_path or not os.path.exists(video_source_path):
                return {"error": f"Failed to download or locate video from URL: {file_path}"}

        elif file_path and not os.path.exists(file_path):
            return {"error": f"Video file not found: {file_path}"}
        elif not file_path and task not in ['get_transcript']: # transcript can work with URL directly
            return {"error": "File path is required for this task."}

        # Execute the appropriate task based on the request
        if task == "get_metadata":
            return self.get_video_metadata(video_source_path)
        elif task == "extract_frames":
            interval_seconds = task_parameters.get("interval_seconds", 5)
            max_frames = task_parameters.get("max_frames")
            return self.extract_frames_from_video(video_source_path, interval_seconds=interval_seconds, max_frames=max_frames)
        elif task == "get_transcript":
            # Use original file_path which might be the URL
            return self.get_youtube_transcript(file_path)
        elif task == "detect_objects":
            if not self.object_detection_model:
                return {"error": "Object detection model not loaded."}
            confidence_threshold = task_parameters.get("confidence_threshold", 0.5)
            frames_to_process = task_parameters.get("frames_to_process", 5) # Process N frames
            return self.detect_objects_in_video(video_source_path, confidence_threshold=confidence_threshold, num_frames_to_sample=frames_to_process)
        else:
            return {"error": f"Unsupported task: {task}"}

    def _extract_video_id(self, youtube_url):
        """Extract the YouTube video ID from a URL."""
        match = re.search(r"(?:v=|\/|embed\/|watch\?v=|youtu\.be\/)([0-9A-Za-z_-]{11})", youtube_url)
        if match:
            return match.group(1)
        return None

    def download_video(self, youtube_url, resolution="360p"):
        """Download YouTube video for processing with improved error handling."""
        video_id = self._extract_video_id(youtube_url)
        if not video_id:
            return {"error": "Invalid YouTube URL or could not extract video ID."}

        output_file_name = f"{video_id}.mp4"
        output_file_path = os.path.join(self.temp_dir, output_file_name)

        if os.path.exists(output_file_path): # Avoid re-downloading
            return {"success": True, "file_path": output_file_path, "message": "Video already downloaded."}

        try:
            # First try with default options
            ydl_opts = {
                'format': f'bestvideo[height<={resolution[:-1]}][ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
                'outtmpl': output_file_path,
                'noplaylist': True,
                'quiet': True,
                'no_warnings': True,
            }
            
            logger.info(f"Attempting to download YouTube video {video_id} at {resolution}...")
            
            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                ydl.download([youtube_url])
            
            if not os.path.exists(output_file_path): # Check if download actually created the file
                # Fallback for some formats if mp4 direct is not available
                logger.info("Primary download method failed, trying alternative format...")
                ydl_opts['format'] = f'best[height<={resolution[:-1]}]' # more generic
                with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                    info_dict = ydl.extract_info(youtube_url, download=True)
                    # yt-dlp might save with a different extension, find the downloaded file
                    downloaded_files = [f for f in os.listdir(self.temp_dir) if f.startswith(video_id)]
                    if downloaded_files:
                        actual_file_path = os.path.join(self.temp_dir, downloaded_files[0])
                        if actual_file_path != output_file_path and actual_file_path.endswith(('.mkv', '.webm', '.flv')):
                            # Use the actual downloaded file
                            output_file_path = actual_file_path
                        elif not actual_file_path.endswith('.mp4'):
                            return {"error": f"Downloaded video is not in a directly usable format: {downloaded_files[0]}"}

            if os.path.exists(output_file_path):
                return {"success": True, "file_path": output_file_path}
            else:
                return {"error": "Video download failed, file not found after attempt."}

        except yt_dlp.utils.DownloadError as e:
            error_msg = str(e)
            if "Sign in to confirm your age" in error_msg:
                return {"error": "Age-restricted video. Cannot download due to platform restrictions."}
            elif "This video is private" in error_msg:
                return {"error": "This video is private and cannot be accessed."}
            elif any(term in error_msg.lower() for term in ["captcha", "bot", "cookie", "forbidden"]):
                return {"error": f"YouTube access restricted due to bot detection. Consider uploading a local video file instead."}
            return {"error": f"yt-dlp download error: {error_msg}"}
        except Exception as e:
            return {"error": f"Failed to download video: {str(e)}"}

    def get_video_metadata(self, video_path):
        """Extract metadata from the video file."""
        if not os.path.exists(video_path):
            return {"error": f"Video file not found: {video_path}"}

        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            return {"error": "Could not open video file."}

        metadata = {
            "frame_count": int(cap.get(cv2.CAP_PROP_FRAME_COUNT)),
            "fps": cap.get(cv2.CAP_PROP_FPS),
            "width": int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
            "height": int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
            "duration": cap.get(cv2.CAP_PROP_FRAME_COUNT) / cap.get(cv2.CAP_PROP_FPS)
        }

        cap.release()
        return {"success": True, "metadata": metadata}

    def extract_frames_from_video(self, video_path, interval_seconds=5, max_frames=None):
        """
        Extracts frames from the video at specified intervals.

        Args:
            video_path (str): Path to the video file.
            interval_seconds (int): Interval in seconds between frames.
            max_frames (int, optional): Maximum number of frames to extract.

        Returns:
            dict: {"success": True, "extracted_frame_paths": [...] } or {"error": "..."}
        """
        if not os.path.exists(video_path):
            return {"error": f"Video file not found: {video_path}"}

        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            return {"error": "Could not open video file."}

        fps = cap.get(cv2.CAP_PROP_FPS)
        frame_interval = int(fps * interval_seconds)
        extracted_frame_paths = []
        frame_count = 0

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            if frame_count % frame_interval == 0:
                frame_id = int(frame_count / frame_interval)
                frame_file_path = os.path.join(self.temp_dir, f"frame_{frame_id:04d}.jpg")
                cv2.imwrite(frame_file_path, frame)
                extracted_frame_paths.append(frame_file_path)
                if max_frames and len(extracted_frame_paths) >= max_frames:
                    break

            frame_count += 1

        cap.release()
        return {"success": True, "extracted_frame_paths": extracted_frame_paths}

    def get_youtube_transcript(self, youtube_url, languages=None):
        """Get the transcript/captions of a YouTube video."""
        if languages is None:
            languages = ['en', 'en-US'] # Default to English
        video_id = self._extract_video_id(youtube_url)
        if not video_id:
            return {"error": "Invalid YouTube URL or could not extract video ID."}
        
        try:
            # Reverting to list_transcripts due to issues with list() in the current env
            transcript_list_obj = YouTubeTranscriptApi.list_transcripts(video_id)
            
            transcript = None
            # Try to find a manual transcript first in the specified languages
            try:
                transcript = transcript_list_obj.find_manually_created_transcript(languages)
            except NoTranscriptFound:
                # If no manual transcript, try to find a generated one
                # This will raise NoTranscriptFound if it also fails, which is caught below.
                transcript = transcript_list_obj.find_generated_transcript(languages)
            
            # Retry logic for transcript.fetch()
            fetched_transcript_entries = None
            max_attempts = 3  # Total attempts
            last_fetch_exception = None

            for attempt in range(max_attempts):
                try:
                    fetched_transcript_entries = transcript.fetch()
                    last_fetch_exception = None # Clear exception on success
                    break  # Successful fetch
                except Exception as e_fetch:
                    last_fetch_exception = e_fetch
                    if attempt < max_attempts - 1:
                        time.sleep(1) # Wait 1 second before retrying
                    # If it's the last attempt, the loop will end, and last_fetch_exception will be set.
            
            if last_fetch_exception: # If all attempts failed
                raise last_fetch_exception # Re-raise the last exception from fetch()

            # Correctly access the 'text' attribute
            full_transcript_text = " ".join([entry.text for entry in fetched_transcript_entries])
            
            return {
                "success": True, 
                "transcript": full_transcript_text, 
                "transcript_entries": fetched_transcript_entries
            }
        except TranscriptsDisabled:
            return {"error": "Transcripts are disabled for this video."}
        except NoTranscriptFound: # This will catch if neither manual nor generated is found for the languages
            return {"error": f"No transcript found for the video in languages: {languages}."}
        except Exception as e:
            # Catches other exceptions from YouTubeTranscriptApi calls or re-raised from fetch
            return {"error": f"Failed to get transcript: {str(e)}"}

    def detect_objects_in_video(self, video_path, confidence_threshold=0.5, num_frames_to_sample=5, target_fps=1):
        """
        Detects objects in the video and returns the count of specified objects.

        Args:
            video_path (str): Path to the video file.
            confidence_threshold (float): Minimum confidence for an object to be counted.
            num_frames_to_sample (int): Number of frames to sample for object detection.
            target_fps (int): Target frames per second for processing.

        Returns:
            dict: {"success": True, "object_counts": {...}} or {"error": "..."}
        """
        if not self.object_detection_model or not self.class_names:
            return {"error": "Object detection model not loaded or class names missing."}
        if not os.path.exists(video_path):
            return {"error": f"Video file not found: {video_path}"}

        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            return {"error": "Could not open video file."}

        object_counts = {cls: 0 for cls in self.class_names}
        frame_count = 0
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        sample_interval = max(1, total_frames // num_frames_to_sample)

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            if frame_count % sample_interval == 0:
                height, width = frame.shape[:2]
                blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False)
                self.object_detection_model.setInput(blob)
                
                layer_names = self.object_detection_model.getLayerNames()
                # Handle potential differences in getUnconnectedOutLayers() return value
                unconnected_out_layers_indices = self.object_detection_model.getUnconnectedOutLayers()
                if isinstance(unconnected_out_layers_indices, np.ndarray) and unconnected_out_layers_indices.ndim > 1 : # For some OpenCV versions
                     output_layer_names = [layer_names[i[0] - 1] for i in unconnected_out_layers_indices]
                else: # For typical cases
                     output_layer_names = [layer_names[i - 1] for i in unconnected_out_layers_indices]

                detections = self.object_detection_model.forward(output_layer_names)

                for detection_set in detections: # Detections can come from multiple output layers
                    for detection in detection_set:
                        scores = detection[5:]
                        class_id = np.argmax(scores)
                        confidence = scores[class_id]

                        if confidence > confidence_threshold:
                            detected_class_name = self.class_names[class_id]
                            object_counts[detected_class_name] += 1
            
            frame_count += 1

        cap.release()
        return {"success": True, "object_counts": object_counts}

    def cleanup(self):
        """Remove temporary files and directory."""
        if os.path.exists(self.temp_dir):
            shutil.rmtree(self.temp_dir, ignore_errors=True)
            # print(f"Cleaned up temp directory: {self.temp_dir}")

# Example Usage (for testing purposes, assuming model files are in ./models/cv/):
if __name__ == '__main__':
    # Create dummy model files for local testing if they don't exist
    os.makedirs("./models/cv", exist_ok=True)
    dummy_cfg = "./models/cv/dummy-yolov3-tiny.cfg"
    dummy_weights = "./models/cv/dummy-yolov3-tiny.weights"
    dummy_names = "./models/cv/dummy-coco.names"

    if not os.path.exists(dummy_cfg): open(dummy_cfg, 'w').write("# Dummy YOLOv3 tiny config")
    if not os.path.exists(dummy_weights): open(dummy_weights, 'w').write("dummy weights") # Actual weights file is binary
    if not os.path.exists(dummy_names): open(dummy_names, 'w').write("bird\\ncat\\ndog\\nperson")
    
    # Initialize tool
    # Note: For real object detection, provide paths to actual .cfg, .weights, and .names files.
    # For example, from: https://pjreddie.com/darknet/yolo/
    video_tool = VideoProcessingTool(
        model_cfg_path=dummy_cfg, # Replace with actual path to YOLOv3-tiny.cfg or similar
        model_weights_path=dummy_weights, # Replace with actual path to YOLOv3-tiny.weights
        class_names_path=dummy_names # Replace with actual path to coco.names
    )

    # Test 1: Get Transcript
    # Replace with a video that has transcripts
    transcript_test_url = "https://www.youtube.com/watch?v=1htKBjuUWec" # Stargate SG-1 clip
    print(f"--- Testing Transcript for: {transcript_test_url} ---")
    transcript_info = video_tool.process_video(transcript_test_url, "transcript")
    if transcript_info.get("success"):
        print("Transcript (first 100 chars):", transcript_info.get("transcript", "")[:100])
    else:
        print("Transcript Error:", transcript_info.get("error"))
    print("\\n")

    # Test 2: Find Dialogue Response
    dialogue_test_url = "https://www.youtube.com/watch?v=1htKBjuUWec" # Stargate SG-1 clip
    print(f"--- Testing Dialogue Response for: {dialogue_test_url} ---")
    dialogue_info = video_tool.process_video(
        dialogue_test_url, 
        "dialogue_response", 
        query_params={"query_phrase": "Isn't that hot?"}
    )
    if dialogue_info.get("success"):
        print(f"Query: 'Isn't that hot?', Response: '{dialogue_info.get('response_text')}'")
    else:
        print("Dialogue Error:", dialogue_info.get("error"))
    print("\\n")

    # Test 3: Object Counting (will likely use dummy model and might not detect much without real video/model)
    # Replace with a video URL that you want to test object counting on.
    # This example will download a short video.
    object_count_test_url = "https://www.youtube.com/watch?v=L1vXCYZAYYM" # Birds video
    print(f"--- Testing Object Counting for: {object_count_test_url} ---")
    # Ensure you have actual model files for this to work meaningfully.
    # The dummy model files will likely result in zero counts or errors if OpenCV can't parse them.
    # For this example, we expect it to run through, but actual detection depends on valid models.
    if video_tool.object_detection_model:
        count_info = video_tool.process_video(
            object_count_test_url,
            "object_count",
            query_params={"target_classes": ["bird"], "resolution": "360p"}
        )
        if count_info.get("success"):
            print("Object Counts:", count_info)
        else:
            print("Object Counting Error:", count_info.get("error"))
    else:
        print("Object detection model not loaded, skipping object count test.")
    
    # Cleanup
    video_tool.cleanup()
    # Clean up dummy model files if they were created by this script
    # (Be careful if you have real files with these names)
    # if os.path.exists(dummy_cfg) and "dummy-yolov3-tiny.cfg" in dummy_cfg : os.remove(dummy_cfg)
    # if os.path.exists(dummy_weights) and "dummy-yolov3-tiny.weights" in dummy_weights: os.remove(dummy_weights)
    # if os.path.exists(dummy_names) and "dummy-coco.names" in dummy_names: os.remove(dummy_names)
    # if os.path.exists("./models/cv") and not os.listdir("./models/cv"): os.rmdir("./models/cv")
    # if os.path.exists("./models") and not os.listdir("./models"): os.rmdir("./models")

    print("\\nAll tests finished.")