File size: 17,667 Bytes
c467d81
 
bffd09a
b09a8ba
 
 
 
 
 
 
 
 
 
c467d81
bffd09a
c467d81
bffd09a
b09a8ba
 
c467d81
bffd09a
b09a8ba
 
 
 
 
 
 
c467d81
bffd09a
c467d81
 
 
 
 
bffd09a
c467d81
b09a8ba
 
 
 
c467d81
b09a8ba
c467d81
b09a8ba
c467d81
 
 
b09a8ba
c467d81
 
b09a8ba
c467d81
b09a8ba
c467d81
b09a8ba
c467d81
 
b09a8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c467d81
b09a8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c467d81
b09a8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c467d81
b09a8ba
 
 
c467d81
b09a8ba
 
 
 
 
 
 
 
bffd09a
b09a8ba
c467d81
b09a8ba
 
c467d81
b09a8ba
 
 
 
 
 
c467d81
b09a8ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c467d81
 
bffd09a
c467d81
 
 
 
 
 
 
 
 
bffd09a
 
c467d81
 
 
 
 
 
 
 
bffd09a
c467d81
 
 
 
bffd09a
c467d81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import requests
from bs4 import BeautifulSoup
from smolagents.tools import Tool
import re
import json
import logging
import time
from urllib.parse import urlparse, urljoin
import pandas as pd

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class WebBrowser(Tool):
    """
    Retrieves information from online sources by browsing web pages.
    Useful for extracting or summarizing web content, with special handling for structured data.
    Can extract tables, lists, and key information from web pages.
    """
    name = "web_browser"
    description = "Fetches content from web pages with improved structured data handling. Has specialized extraction for Wikipedia. Returns text content or structured data."
    inputs = {
        'url': {'type': 'string', 'description': 'The URL of the web page to browse.'},
        'extraction_mode': {'type': 'string', 'description': 'Mode for data extraction: "text" (default), "tables", "lists", or "structured".', 'nullable': True}
    }
    outputs = {'content': {'type': 'object', 'description': 'The extracted content from the web page, either as text or structured data.'}}
    output_type = "object"

    def __init__(self, user_agent="GAIA-Agent/1.0", *args, **kwargs):
        """
        Initializes the web browser with a user agent.
        Args:
            user_agent (str): The User-Agent string to use for requests.
        """
        super().__init__(*args, **kwargs)
        self.headers = {"User-Agent": user_agent}
        self.is_initialized = True
        # Add a session to maintain cookies
        self.session = requests.Session()
        self.session.headers.update(self.headers)

    def forward(self, url: str, extraction_mode: str = "text") -> dict:
        """
        Fetches the content of a web page and extracts information based on the specified mode.

        Args:
            url (str): The URL of the web page to browse.
            extraction_mode (str): The mode for data extraction - "text" (default), "tables", "lists", or "structured"

        Returns:
            dict: The extracted content or an error message
        """
        # Validate URL
        if not url.startswith(('http://', 'https://')):
            return {"error": f"Invalid URL format. URL must start with http:// or https://. Received: {url}"}

        try:
            # Check if it's Wikipedia and use special handling
            if 'wikipedia.org' in url:
                return self._handle_wikipedia(url, extraction_mode)
            
            # Process normal web pages
            return self._process_regular_webpage(url, extraction_mode)
            
        except requests.exceptions.HTTPError as http_err:
            return {"error": f"HTTP error occurred while fetching {url}: {http_err}"}
        except requests.exceptions.ConnectionError as conn_err:
            return {"error": f"Connection error occurred while fetching {url}: {conn_err}"}
        except requests.exceptions.Timeout as timeout_err:
            return {"error": f"Timeout occurred while fetching {url}: {timeout_err}"}
        except requests.exceptions.RequestException as req_err:
            return {"error": f"An unexpected error occurred while fetching {url}: {req_err}"}
        except Exception as e:
            return {"error": f"An unexpected error occurred during parsing of {url}: {e}"}

    def _process_regular_webpage(self, url, extraction_mode):
        """Process a regular (non-Wikipedia) webpage"""
        response = self.session.get(url, timeout=15)
        response.raise_for_status()
        
        # Use BeautifulSoup to parse the HTML content
        soup = BeautifulSoup(response.content, 'html.parser')
        
        # Remove script and style elements
        for script_or_style in soup(["script", "style"]):
            script_or_style.decompose()
            
        if extraction_mode == "text":
            return self._extract_text(soup, url)
        elif extraction_mode == "tables":
            return self._extract_tables(soup, url)
        elif extraction_mode == "lists":
            return self._extract_lists(soup, url)
        elif extraction_mode == "structured":
            return self._extract_structured_data(soup, url)
        else:
            return {"error": f"Unknown extraction mode: {extraction_mode}"}

    def _handle_wikipedia(self, url, extraction_mode):
        """Special handling for Wikipedia pages"""
        # For Wikipedia, try to use the API instead of scraping the HTML
        parsed_url = urlparse(url)
        if not parsed_url.netloc.endswith('wikipedia.org'):
            return self._process_regular_webpage(url, extraction_mode)
            
        # Extract the title from the URL path
        path_parts = parsed_url.path.split('/')
        if len(path_parts) < 3 or path_parts[1] != 'wiki':
            # Not a standard Wikipedia article URL
            return self._process_regular_webpage(url, extraction_mode)
            
        title = path_parts[2]
        lang = parsed_url.netloc.split('.')[0]
        
        # Use Wikipedia API to get structured content
        api_url = f"https://{lang}.wikipedia.org/api/rest_v1/page/summary/{title}"
        
        try:
            logger.info(f"Fetching Wikipedia API data from {api_url}")
            api_response = self.session.get(api_url, timeout=15)
            api_response.raise_for_status()
            api_data = api_response.json()
            
            # Basic information from the API
            wiki_data = {
                "title": api_data.get("title", ""),
                "description": api_data.get("description", ""),
                "extract": api_data.get("extract", ""),
                "url": api_data.get("content_urls", {}).get("desktop", {}).get("page", url)
            }
            
            # If we need more detailed data beyond the summary
            if extraction_mode in ["tables", "structured"]:
                # Get the full HTML anyway for tables and other structured data
                response = self.session.get(url, timeout=15)
                response.raise_for_status()
                soup = BeautifulSoup(response.content, 'html.parser')
                
                # Add tables to the response
                tables = self._extract_tables(soup, url, return_raw=False)
                wiki_data["tables"] = tables.get("tables", [])
                
                # For "structured" mode, add sections, infobox and other elements
                if extraction_mode == "structured":
                    wiki_data["infobox"] = self._extract_wikipedia_infobox(soup)
                    wiki_data["sections"] = self._extract_wikipedia_sections(soup)
                
                return {
                    "source": "wikipedia_api_enhanced",
                    "url": url,
                    "data": wiki_data
                }
            
            # For basic text, return the API data
            return {
                "source": "wikipedia_api",
                "url": url,
                "data": wiki_data
            }
                
        except (requests.exceptions.RequestException, ValueError) as e:
            logger.warning(f"Wikipedia API request failed: {e}. Falling back to HTML scraping.")
            # Fallback to normal HTML processing
            return self._process_regular_webpage(url, extraction_mode)

    def _extract_text(self, soup, url):
        """Extract clean text from the page"""
        text_from_soup = soup.get_text(separator='\n', strip=True)

        # Convert multiple newlines to a single newline and clean spaces within lines
        cleaned_lines = []
        for line in text_from_soup.splitlines():
            line = line.strip()  # Strip leading/trailing whitespace
            if line:  # Only process non-empty lines
                # Replace multiple spaces with a single space
                cleaned_line = ' '.join(line.split())
                cleaned_lines.append(cleaned_line)

        text = '\n'.join(cleaned_lines)

        if not text:
            return {"error": f"No text content found at {url}."}

        return {
            "source": "web_page",
            "url": url,
            "content_type": "text",
            "text": text
        }

    def _extract_tables(self, soup, url, return_raw=True):
        """Extract tables from the page"""
        tables = []
        
        # Find all table elements
        html_tables = soup.find_all('table')
        
        for i, table in enumerate(html_tables):
            try:
                # Try to convert to a pandas DataFrame
                dfs = pd.read_html(str(table))
                
                if dfs:
                    # Convert each DataFrame to a dict for JSON serialization
                    for j, df in enumerate(dfs):
                        # Clean column names
                        df.columns = [str(col).strip() for col in df.columns]
                        
                        # Convert DataFrame to dict
                        table_dict = {
                            "table_id": f"table_{i}_{j}",
                            "headers": df.columns.tolist(),
                            "rows": df.values.tolist(),
                        }
                        tables.append(table_dict)
            except Exception as e:
                logger.warning(f"Failed to parse table {i}: {e}")
                # Try a manual extraction
                try:
                    headers = []
                    header_row = table.find('tr')
                    if header_row:
                        headers = [th.get_text(strip=True) for th in header_row.find_all(['th', 'td'])]
                    
                    rows = []
                    for tr in table.find_all('tr'):
                        row = [td.get_text(strip=True) for td in tr.find_all(['td', 'th'])]
                        if row and row != headers:  # Skip header row in data
                            rows.append(row)
                    
                    if headers or rows:
                        tables.append({
                            "table_id": f"table_{i}_manual",
                            "headers": headers,
                            "rows": rows
                        })
                except Exception:
                    continue  # Skip if manual extraction also fails
        
        if return_raw:
            return {
                "source": "web_page",
                "url": url,
                "content_type": "tables",
                "table_count": len(tables),
                "tables": tables
            }
        else:
            return {"tables": tables}

    def _extract_lists(self, soup, url):
        """Extract lists from the page"""
        lists = []
        
        # Find all ul and ol elements
        for list_type in ['ul', 'ol']:
            list_elements = soup.find_all(list_type, recursive=True)
            
            for i, list_elem in enumerate(list_elements):
                # Skip nested lists to avoid duplication
                if list_elem.parent.name in ['li', 'ul', 'ol']:
                    continue
                    
                items = []
                for li in list_elem.find_all('li', recursive=False):
                    # Get text but exclude any nested lists
                    for nested_list in li.find_all(['ul', 'ol']):
                        nested_list.decompose()
                    
                    item_text = li.get_text(strip=True)
                    if item_text:
                        items.append(item_text)
                
                if items:
                    lists.append({
                        "list_id": f"{list_type}_{i}",
                        "list_type": "ordered" if list_type == "ol" else "unordered",
                        "items": items
                    })
        
        return {
            "source": "web_page",
            "url": url,
            "content_type": "lists",
            "list_count": len(lists),
            "lists": lists
        }

    def _extract_structured_data(self, soup, url):
        """Extract various types of structured data from the page"""
        result = {
            "source": "web_page",
            "url": url,
            "content_type": "structured",
            "title": soup.title.string if soup.title else "",
            "meta_description": "",
        }
        
        # Extract meta description
        meta_desc = soup.find('meta', attrs={'name': 'description'})
        if meta_desc:
            result["meta_description"] = meta_desc.get('content', '')
        
        # Extract main text content
        text_result = self._extract_text(soup, url)
        if "text" in text_result:
            result["text"] = text_result["text"]
        
        # Extract tables
        tables_result = self._extract_tables(soup, url, return_raw=False)
        result["tables"] = tables_result.get("tables", [])
        
        # Extract lists
        lists_result = self._extract_lists(soup, url)
        result["lists"] = lists_result.get("lists", [])
        
        # Extract headings for document structure
        headings = []
        for i, heading in enumerate(soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6'])):
            headings.append({
                "id": f"heading_{i}",
                "level": int(heading.name[1]),
                "text": heading.get_text(strip=True)
            })
        result["headings"] = headings
        
        # Look for JSON-LD structured data
        json_ld_data = []
        for script in soup.find_all('script', type='application/ld+json'):
            try:
                json_data = json.loads(script.string)
                json_ld_data.append(json_data)
            except (json.JSONDecodeError, ValueError):
                continue
        
        if json_ld_data:
            result["structured_data"] = json_ld_data
        
        return result

    def _extract_wikipedia_infobox(self, soup):
        """Extract information from Wikipedia infobox"""
        infobox = {}
        
        # Look for the infobox table
        infobox_table = soup.find('table', class_=['infobox', 'vcard'])
        if infobox_table:
            for row in infobox_table.find_all('tr'):
                # Look for th/td pairs
                header = row.find('th')
                value = row.find('td')
                
                if header and value:
                    key = header.get_text(strip=True)
                    # Clean up the value text
                    for sup in value.find_all('sup'):
                        sup.decompose()  # Remove reference superscripts
                    
                    val = value.get_text(strip=True)
                    if key and val:
                        infobox[key] = val
        
        return infobox

    def _extract_wikipedia_sections(self, soup):
        """Extract sections and their content from Wikipedia"""
        sections = []
        current_section = None
        
        # Find all headings
        headings = soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6'])
        
        for heading in headings:
            # Skip non-content headings
            if heading.get('id') in ['firstHeading', 'mw-toc-heading']:
                continue
                
            level = int(heading.name[1])
            title = heading.get_text(strip=True)
            
            # Start a new section
            current_section = {
                "level": level,
                "title": title,
                "content": ""
            }
            
            # Get content until next heading
            content_elements = []
            sibling = heading.next_sibling
            
            while sibling and not (sibling.name and sibling.name.startswith('h')):
                if sibling.name in ['p', 'ul', 'ol']:
                    content_elements.append(sibling.get_text(strip=True))
                sibling = sibling.next_sibling
            
            if content_elements:
                current_section["content"] = "\n".join(content_elements)
                sections.append(current_section)
        
        return sections

if __name__ == '__main__':
    browser = WebBrowser()  # Instantiation remains the same for testing

    # Example usage:
    # Note: For a real agent, the URL would come from the task or a search step.
    # This example uses a known Wikipedia page for demonstration.
    # For tasks like "How many studio albums were published by Mercedes Sosa...",
    # the agent would first need to find the relevant Wikipedia URL.

    test_url_wikipedia = "https://en.wikipedia.org/wiki/Mercedes_Sosa"
    print(f"--- Browsing: {test_url_wikipedia} ---")
    # For testing, call 'forward' directly
    content_wikipedia = browser.forward(test_url_wikipedia)
    if content_wikipedia.startswith("Error:"):
        print(content_wikipedia)
    else:
        # Print first 1000 characters for brevity in example
        print(content_wikipedia[:1000] + "..." if len(content_wikipedia) > 1000 else content_wikipedia)

    print("\n--- Example with a non-existent page ---")
    test_url_non_existent = "http://example.com/nonexistentpage12345.html"
    content_non_existent = browser.forward(test_url_non_existent)
    print(content_non_existent)

    print("\n--- Example with an invalid URL format ---")
    test_url_invalid_format = "www.google.com"
    content_invalid_format = browser.forward(test_url_invalid_format)
    print(content_invalid_format)