Yago Bolivar
ref(app.py, prompts.yaml, final_answer_tool.py): adapt the code to submission requirements
64a3746
from smolagents import CodeAgent, HfApiModel, OpenAIServerModel | |
from Gradio_UI import GradioUI | |
import yaml | |
import os | |
import requests | |
import pandas as pd | |
import gradio as gr | |
import time | |
# Import tool CLASSES from the src directory | |
from src.final_answer_tool import FinalAnswerTool | |
from src.web_browsing_tool import WebBrowser | |
from src.file_processing_tool import FileIdentifier | |
from src.image_processing_tool import ImageProcessor | |
from src.markdown_table_parser import MarkdownTableParserTool # Updated | |
from src.python_tool import CodeExecutionTool | |
from src.speech_to_text import SpeechToTextTool # Updated | |
from src.spreadsheet_tool import SpreadsheetTool | |
from src.text_reversal_tool import TextReversalTool | |
from src.video_processing_tool import VideoProcessingTool | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
# Enhanced Phase 1: Lightweight Model and Token Management for HF Spaces | |
try: | |
# Try OpenAI first (if API key available) - Use mini version for better token management | |
model = OpenAIServerModel( | |
model_id="gpt-4o-mini", # Use mini version for better token management | |
api_base="https://api.openai.com/v1", | |
api_key=os.environ.get("OPENAI_API_KEY"), | |
max_tokens=2000, # Increased from 1000 for better reasoning capability | |
temperature=0.1, # Lower temperature for more consistent outputs | |
) | |
print("Using OpenAI gpt-4o-mini model") | |
except Exception as e: | |
print(f"OpenAI model initialization failed: {e}") | |
# Fallback to HF model - More capable than DialoGPT-medium | |
try: | |
model = HfApiModel( | |
model_id="microsoft/DialoGPT-large", # Upgraded from medium for better capability | |
max_tokens=2000, | |
temperature=0.1, | |
custom_role_conversions=None, | |
) | |
print("Using fallback HF DialoGPT-large model") | |
except Exception as fallback_error: | |
print(f"Fallback model initialization failed: {fallback_error}") | |
# Final fallback to basic HF model | |
model = HfApiModel( | |
max_tokens=2000, | |
temperature=0.1, | |
) | |
print("Using basic HF model as final fallback") | |
# Instantiate Tools | |
final_answer_tool = FinalAnswerTool() | |
web_browsing_tool = WebBrowser() | |
file_processing_tool = FileIdentifier() | |
image_processing_tool = ImageProcessor() | |
markdown_parser_tool = MarkdownTableParserTool() # Updated | |
python_tool = CodeExecutionTool() | |
speech_to_text_tool = SpeechToTextTool() # Updated | |
spreadsheet_tool = SpreadsheetTool() | |
text_reversal_tool = TextReversalTool() | |
video_processing_tool = VideoProcessingTool() | |
# Add debug prints for file paths | |
print("Current directory:", os.getcwd()) | |
print("prompts.yaml exists:", os.path.exists("prompts.yaml")) | |
# Load Prompts | |
try: | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
print("Loaded prompts.yaml successfully. Structure:", type(prompt_templates)) # Debug | |
if isinstance(prompt_templates, dict): | |
print("Keys:", prompt_templates.keys()) # Debug | |
else: | |
print("Loaded prompt_templates is not a dictionary.") | |
except FileNotFoundError: | |
print("Error: prompts.yaml not found. Using default templates.") | |
prompt_templates = { | |
"system_prompt": { # This was a single string, now a dict | |
"base": "You are an expert assistant...", # Default value | |
"with_tools": "At each step...", # Default value | |
}, | |
"system": { # This section was already a dict, kept for consistency | |
"base": "You are a GAIA benchmark agent running in HF Spaces. Be concise and efficient in your responses.", | |
"with_tools": "Think briefly, act decisively. Use tools efficiently to solve GAIA benchmark tasks." | |
}, | |
"human": { | |
"base": "Here is your task: {{task}}\\\\nProvide exact answer. Be concise and efficient.", # Updated base | |
"with_tools": "Here is your task: {{task}}\\\\nUse available tools strategically. Be direct and resource-conscious: {{tools}}" # Updated with_tools | |
}, | |
"planning": { | |
"initial_facts": "Task: {{task}}. Identify key facts and missing information concisely.", | |
"initial_plan": "Develop an efficient 3-5 step plan for this GAIA task using available tools." | |
# etc... | |
}, | |
"managed_agent": { | |
"task": "Managed agent task: {{task}}", | |
"report": "Managed agent report: {{final_answer}}" | |
}, | |
"final_answer": { | |
"base": "The final answer is: {{answer}}" | |
} | |
# Include all other required sections as per your YAML structure if they exist | |
} | |
except yaml.YAMLError as e: | |
print(f"Error parsing prompts.yaml: {e}") | |
print("Using default templates optimized for HF Spaces") | |
prompt_templates = { | |
"system_prompt": "You are a helpful AI assistant. Please be concise and efficient.", | |
"system": { | |
"base": "You are a GAIA benchmark agent running in HF Spaces. Be concise and efficient in your responses.", | |
"with_tools": "Think briefly, act decisively. Use tools efficiently to solve GAIA benchmark tasks." | |
}, | |
"human": { | |
"base": "GAIA Task: {{task}}\\\\nProvide exact answer. Be concise and efficient.", | |
"with_tools": "GAIA Task: {{task}}\\\\nUse available tools strategically. Be direct and resource-conscious: {{tools}}" | |
}, | |
"planning": { | |
"initial_facts": "Task: {{task}}. Identify key facts and missing information concisely.", | |
"initial_plan": "Develop an efficient 3-5 step plan for this GAIA task using available tools." | |
}, | |
"managed_agent": { | |
"task": "Managed agent task: {{task}}", | |
"report": "Managed agent report: {{final_answer}}" | |
}, | |
"final_answer": { # Placeholder, structure might need refinement based on agent's specific use | |
"base": "The final answer is: {{answer}}" | |
} | |
} | |
# Enhanced agent configuration for HF Spaces optimization | |
class EnhancedCodeAgent(CodeAgent): | |
def __call__(self, question: str) -> str: | |
try: | |
response = self.run(question) | |
return response | |
except Exception as e: | |
print(f"Agent execution error: {e}") | |
# Provide a graceful fallback response | |
return f"I encountered an issue while processing your request. Here's what I know: {str(e)}" | |
# Create the Agent | |
agent_tools = [ | |
final_answer_tool, | |
web_browsing_tool, | |
file_processing_tool, | |
image_processing_tool, | |
markdown_parser_tool, # Updated | |
python_tool, | |
speech_to_text_tool, # Updated | |
spreadsheet_tool, | |
text_reversal_tool, | |
video_processing_tool | |
] | |
# Flatten system_prompt if it's a dict (e.g., from YAML) | |
if isinstance(prompt_templates.get("system_prompt"), dict): | |
# Use the 'main' variant by default | |
prompt_templates["system_prompt"] = prompt_templates["system_prompt"].get("main", "") | |
# Enhanced agent configuration for HF Spaces optimization | |
agent = EnhancedCodeAgent( | |
model=model, | |
tools=agent_tools, | |
max_steps=8, # Increased from 5 to handle multi-step reasoning while staying efficient | |
verbosity_level=1, # Keep some verbosity for debugging in HF Spaces | |
name="GAIAAgent", # Updated name to reflect GAIA benchmark focus | |
description="Efficient GAIA benchmark agent optimized for HF Spaces with enhanced token management", | |
prompt_templates=prompt_templates | |
) | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the agent on them, submits answers, | |
and displays the results. | |
""" | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Use existing agent | |
try: | |
# agent is already instantiated globally | |
if not agent: | |
return "Error: Agent not initialized", None | |
except Exception as e: | |
print(f"Error accessing agent: {e}") | |
return f"Error accessing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
# Ensure submitted_answer is a simple string/number/float | |
if isinstance(submitted_answer, dict): | |
# Extract meaningful value or convert to string | |
if len(submitted_answer) == 1: | |
submitted_answer = list(submitted_answer.values())[0] | |
else: | |
submitted_answer = str(submitted_answer) | |
elif not isinstance(submitted_answer, (str, int, float)): | |
submitted_answer = str(submitted_answer) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# Launch the Gradio UI | |
if __name__ == '__main__': | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
# Build Gradio Interface using Blocks | |
with gr.Blocks() as demo: | |
gr.Markdown("# Enhanced Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time (this is the time for the agent to go through all the questions). | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
print("Launching Gradio Interface...") | |
demo.launch(debug=True, share=False) |