|
from smolagents import CodeAgent, HfApiModel, OpenAIServerModel |
|
|
|
from Gradio_UI import GradioUI |
|
import yaml |
|
import os |
|
import requests |
|
import pandas as pd |
|
import gradio as gr |
|
import time |
|
|
|
|
|
from src.final_answer_tool import FinalAnswerTool |
|
from src.web_browsing_tool import WebBrowser |
|
from src.file_processing_tool import FileIdentifier |
|
from src.image_processing_tool import ImageProcessor |
|
from src.markdown_table_parser import MarkdownTableParserTool |
|
from src.python_tool import CodeExecutionTool |
|
from src.speech_to_text import SpeechToTextTool |
|
from src.spreadsheet_tool import SpreadsheetTool |
|
from src.text_reversal_tool import TextReversalTool |
|
from src.video_processing_tool import VideoProcessingTool |
|
from src.web_content_extractor import WebContentExtractor |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
|
|
try: |
|
|
|
model = OpenAIServerModel( |
|
model_id="gpt-4o-mini", |
|
api_base="https://api.openai.com/v1", |
|
api_key=os.environ.get("OPENAI_API_KEY"), |
|
max_tokens=2000, |
|
temperature=0.1, |
|
) |
|
print("Using OpenAI gpt-4o-mini model") |
|
except Exception as e: |
|
print(f"OpenAI model initialization failed: {e}") |
|
|
|
try: |
|
model = HfApiModel( |
|
model_id="microsoft/DialoGPT-large", |
|
max_tokens=2000, |
|
temperature=0.1, |
|
custom_role_conversions=None, |
|
) |
|
print("Using fallback HF DialoGPT-large model") |
|
except Exception as fallback_error: |
|
print(f"Fallback model initialization failed: {fallback_error}") |
|
|
|
model = HfApiModel( |
|
max_tokens=2000, |
|
temperature=0.1, |
|
) |
|
print("Using basic HF model as final fallback") |
|
|
|
|
|
final_answer_tool = FinalAnswerTool() |
|
web_browsing_tool = WebBrowser() |
|
file_processing_tool = FileIdentifier() |
|
image_processing_tool = ImageProcessor() |
|
markdown_parser_tool = MarkdownTableParserTool() |
|
python_tool = CodeExecutionTool() |
|
speech_to_text_tool = SpeechToTextTool() |
|
spreadsheet_tool = SpreadsheetTool() |
|
text_reversal_tool = TextReversalTool() |
|
video_processing_tool = VideoProcessingTool() |
|
web_content_extractor = WebContentExtractor() |
|
|
|
|
|
print("Current directory:", os.getcwd()) |
|
print("prompts.yaml exists:", os.path.exists("prompts.yaml")) |
|
|
|
|
|
try: |
|
with open("prompts.yaml", 'r') as stream: |
|
prompt_templates = yaml.safe_load(stream) |
|
print("Loaded prompts.yaml successfully. Structure:", type(prompt_templates)) |
|
if isinstance(prompt_templates, dict): |
|
print("Keys:", prompt_templates.keys()) |
|
else: |
|
print("Loaded prompt_templates is not a dictionary.") |
|
except FileNotFoundError: |
|
print("Error: prompts.yaml not found. Using default templates.") |
|
prompt_templates = { |
|
"system_prompt": { |
|
"base": "You are an expert assistant...", |
|
"with_tools": "At each step...", |
|
}, |
|
"system": { |
|
"base": "You are a GAIA benchmark agent running in HF Spaces. Be concise and efficient in your responses.", |
|
"with_tools": "Think briefly, act decisively. Use tools efficiently to solve GAIA benchmark tasks." |
|
}, |
|
"human": { |
|
"base": "Here is your task: {{task}}\\\\nProvide exact answer. Be concise and efficient.", |
|
"with_tools": "Here is your task: {{task}}\\\\nUse available tools strategically. Be direct and resource-conscious: {{tools}}" |
|
}, |
|
"planning": { |
|
"initial_facts": "Task: {{task}}. Identify key facts and missing information concisely.", |
|
"initial_plan": "Develop an efficient 3-5 step plan for this GAIA task using available tools." |
|
|
|
}, |
|
"managed_agent": { |
|
"task": "Managed agent task: {{task}}", |
|
"report": "Managed agent report: {{final_answer}}" |
|
}, |
|
"final_answer": { |
|
"base": "The final answer is: {{answer}}" |
|
} |
|
|
|
} |
|
except yaml.YAMLError as e: |
|
print(f"Error parsing prompts.yaml: {e}") |
|
print("Using default templates optimized for HF Spaces") |
|
prompt_templates = { |
|
"system_prompt": "You are a helpful AI assistant. Please be concise and efficient.", |
|
"system": { |
|
"base": "You are a GAIA benchmark agent running in HF Spaces. Be concise and efficient in your responses.", |
|
"with_tools": "Think briefly, act decisively. Use tools efficiently to solve GAIA benchmark tasks." |
|
}, |
|
"human": { |
|
"base": "GAIA Task: {{task}}\\\\nProvide exact answer. Be concise and efficient.", |
|
"with_tools": "GAIA Task: {{task}}\\\\nUse available tools strategically. Be direct and resource-conscious: {{tools}}" |
|
}, |
|
"planning": { |
|
"initial_facts": "Task: {{task}}. Identify key facts and missing information concisely.", |
|
"initial_plan": "Develop an efficient 3-5 step plan for this GAIA task using available tools." |
|
}, |
|
"managed_agent": { |
|
"task": "Managed agent task: {{task}}", |
|
"report": "Managed agent report: {{final_answer}}" |
|
}, |
|
"final_answer": { |
|
"base": "The final answer is: {{answer}}" |
|
} |
|
} |
|
|
|
|
|
|
|
class EnhancedCodeAgent(CodeAgent): |
|
def __call__(self, question: str) -> str: |
|
try: |
|
response = self.run(question) |
|
return response |
|
except Exception as e: |
|
print(f"Agent execution error: {e}") |
|
|
|
return f"I encountered an issue while processing your request. Here's what I know: {str(e)}" |
|
|
|
|
|
agent_tools = [ |
|
final_answer_tool, |
|
web_browsing_tool, |
|
file_processing_tool, |
|
image_processing_tool, |
|
markdown_parser_tool, |
|
python_tool, |
|
speech_to_text_tool, |
|
spreadsheet_tool, |
|
text_reversal_tool, |
|
video_processing_tool, |
|
web_content_extractor |
|
] |
|
|
|
|
|
if isinstance(prompt_templates.get("system_prompt"), dict): |
|
|
|
prompt_templates["system_prompt"] = prompt_templates["system_prompt"].get("main", "") |
|
|
|
|
|
|
|
agent = EnhancedCodeAgent( |
|
model=model, |
|
tools=agent_tools, |
|
max_steps=8, |
|
verbosity_level=1, |
|
name="GAIAAgent", |
|
description="Efficient GAIA benchmark agent optimized for HF Spaces with enhanced token management", |
|
prompt_templates=prompt_templates |
|
) |
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the agent on them, submits answers, |
|
and displays the results. |
|
""" |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
|
|
if not agent: |
|
return "Error: Agent not initialized", None |
|
except Exception as e: |
|
print(f"Error accessing agent: {e}") |
|
return f"Error accessing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
|
|
try: |
|
submitted_answer = agent(question_text) |
|
|
|
if isinstance(submitted_answer, dict): |
|
|
|
if len(submitted_answer) == 1: |
|
submitted_answer = list(submitted_answer.values())[0] |
|
else: |
|
submitted_answer = str(submitted_answer) |
|
elif not isinstance(submitted_answer, (str, int, float)): |
|
submitted_answer = str(submitted_answer) |
|
|
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
if __name__ == '__main__': |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Enhanced Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time (this is the time for the agent to go through all the questions). |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
print("Launching Gradio Interface...") |
|
demo.launch(debug=True, share=False) |