Yago Bolivar
commited on
Commit
·
2e3dd06
1
Parent(s):
c5a6e89
feat: enhance BasicAgent to handle file inputs and improve question processing
Browse files
app.py
CHANGED
@@ -1,34 +1,117 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
|
7 |
-
|
|
|
|
|
|
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
10 |
|
11 |
# --- Basic Agent Definition ---
|
12 |
-
# ----- THIS IS
|
13 |
class BasicAgent:
|
14 |
def __init__(self):
|
15 |
print("BasicAgent initialized.")
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
and displays the results.
|
26 |
"""
|
27 |
-
|
28 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
29 |
|
30 |
if profile:
|
31 |
-
username= f"{profile.username}"
|
32 |
print(f"User logged in: {username}")
|
33 |
else:
|
34 |
print("User not logged in.")
|
@@ -38,65 +121,78 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
agent = BasicAgent()
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
|
48 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
print(agent_code)
|
50 |
|
51 |
-
# 2. Fetch Questions
|
52 |
print(f"Fetching questions from: {questions_url}")
|
53 |
try:
|
54 |
-
response = requests.get(questions_url, timeout=
|
55 |
response.raise_for_status()
|
56 |
questions_data = response.json()
|
57 |
if not questions_data:
|
58 |
-
|
59 |
-
|
60 |
print(f"Fetched {len(questions_data)} questions.")
|
61 |
except requests.exceptions.RequestException as e:
|
62 |
print(f"Error fetching questions: {e}")
|
63 |
return f"Error fetching questions: {e}", None
|
64 |
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
except Exception as e:
|
69 |
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
|
72 |
-
# 3. Run your Agent
|
73 |
results_log = []
|
74 |
answers_payload = []
|
75 |
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
for item in questions_data:
|
77 |
task_id = item.get("task_id")
|
78 |
-
question_text = item.get("question")
|
79 |
-
|
80 |
-
|
|
|
|
|
81 |
continue
|
|
|
|
|
|
|
|
|
82 |
try:
|
83 |
-
submitted_answer = agent(
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
-
results_log.append({
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
if not answers_payload:
|
91 |
print("Agent did not produce any answers to submit.")
|
92 |
-
|
|
|
|
|
93 |
|
94 |
-
# 4. Prepare Submission
|
95 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
print(status_update)
|
98 |
|
99 |
-
# 5. Submit
|
100 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
try:
|
102 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
@@ -118,7 +214,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
118 |
error_json = e.response.json()
|
119 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
except requests.exceptions.JSONDecodeError:
|
121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
122 |
status_message = f"Submission Failed: {error_detail}"
|
123 |
print(status_message)
|
124 |
results_df = pd.DataFrame(results_log)
|
@@ -142,19 +238,19 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
142 |
|
143 |
# --- Build Gradio Interface using Blocks ---
|
144 |
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("#
|
146 |
gr.Markdown(
|
147 |
"""
|
148 |
**Instructions:**
|
149 |
|
150 |
-
1.
|
151 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
|
154 |
---
|
155 |
-
**
|
156 |
-
|
157 |
-
This
|
158 |
"""
|
159 |
)
|
160 |
|
@@ -163,34 +259,36 @@ with gr.Blocks() as demo:
|
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
#
|
167 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
169 |
run_button.click(
|
170 |
fn=run_and_submit_all,
|
|
|
171 |
outputs=[status_output, results_table]
|
172 |
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID")
|
179 |
|
180 |
if space_host_startup:
|
181 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
182 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
183 |
else:
|
184 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally
|
185 |
|
186 |
-
if space_id_startup:
|
187 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
else:
|
191 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally
|
192 |
|
193 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
-
print("Launching Gradio Interface for
|
196 |
-
demo.launch(
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
+
import inspect # Keep if you plan to use it for agent introspection later
|
5 |
import pandas as pd
|
6 |
|
7 |
+
from src.file_processing_tool import FileIdentifier
|
8 |
+
from src.speech_to_text import transcribe_audio
|
9 |
+
from src.download_utils import download_file
|
10 |
+
|
11 |
# --- Constants ---
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
+
DOWNLOADED_FILES_DIR = "downloaded_task_files" # Directory to store downloaded files
|
14 |
+
# Ensure the directory for downloaded files exists when the app starts
|
15 |
+
os.makedirs(DOWNLOADED_FILES_DIR, exist_ok=True)
|
16 |
|
17 |
# --- Basic Agent Definition ---
|
18 |
+
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
|
19 |
class BasicAgent:
|
20 |
def __init__(self):
|
21 |
print("BasicAgent initialized.")
|
22 |
+
self.file_identifier = FileIdentifier()
|
23 |
+
# You might initialize other tools here if needed (e.g., spreadsheet parser, OCR)
|
24 |
+
|
25 |
+
def __call__(self, question_data: dict) -> str:
|
26 |
+
question_text = question_data.get("question")
|
27 |
+
file_url = question_data.get("file_url")
|
28 |
+
task_id = question_data.get("task_id", "unknown_task") # For unique file naming
|
29 |
+
|
30 |
+
print(f"Agent received task_id: {task_id}, question: {question_text}, file_url: {file_url}")
|
31 |
+
downloaded_file_path = None
|
32 |
+
|
33 |
+
if file_url:
|
34 |
+
print(f"File URL provided: {file_url}")
|
35 |
+
# Construct a unique filename
|
36 |
+
original_filename = file_url.split('/')[-1] if file_url else "file"
|
37 |
+
# Basic sanitization for filename
|
38 |
+
safe_original_filename = "".join(c for c in original_filename if c.isalnum() or c in ['.', '_', '-']).strip()
|
39 |
+
if not safe_original_filename: # Handle cases where sanitization leaves an empty string
|
40 |
+
safe_original_filename = "downloaded_file"
|
41 |
+
|
42 |
+
unique_filename = f"{task_id}_{safe_original_filename}"
|
43 |
+
|
44 |
+
downloaded_file_path = download_file(file_url, DOWNLOADED_FILES_DIR, filename=unique_filename)
|
45 |
+
|
46 |
+
if not downloaded_file_path:
|
47 |
+
print(f"Error: Failed to download the associated file for task {task_id} from {file_url}.")
|
48 |
+
return "Error: Failed to download the associated file."
|
49 |
+
|
50 |
+
print(f"File downloaded to: {downloaded_file_path}")
|
51 |
+
file_info = self.file_identifier.identify_file(downloaded_file_path)
|
52 |
+
print(f"File info for {downloaded_file_path}: {file_info}")
|
53 |
+
|
54 |
+
if file_info.get("error"):
|
55 |
+
return f"Error processing file: {file_info['error']}"
|
56 |
|
57 |
+
if file_info["determined_type"] == "audio" and file_info["suggested_action"] == "speech-to-text":
|
58 |
+
print(f"File {downloaded_file_path} identified as audio, attempting transcription...")
|
59 |
+
transcribed_text = transcribe_audio(downloaded_file_path)
|
60 |
+
|
61 |
+
if "Error during transcription" in transcribed_text: # Basic error check
|
62 |
+
print(f"Transcription error for {downloaded_file_path}: {transcribed_text}")
|
63 |
+
return f"Could not transcribe audio: {transcribed_text}"
|
64 |
+
|
65 |
+
# Placeholder: Use the question and transcribed_text to form an answer
|
66 |
+
# In a real agent, you'd use an LLM or other logic here.
|
67 |
+
answer = f"The audio file says: {transcribed_text[:200]}... (This is a placeholder answer based on transcription)"
|
68 |
+
print(f"Returning answer based on audio: {answer}")
|
69 |
+
return answer
|
70 |
+
|
71 |
+
# Add more conditions for other file types and actions
|
72 |
+
# elif file_info["determined_type"] == "spreadsheet":
|
73 |
+
# # Call your spreadsheet parser
|
74 |
+
# # data = self.spreadsheet_parser.parse(downloaded_file_path)
|
75 |
+
# # answer = self.reason_about_spreadsheet(question_text, data)
|
76 |
+
# # return answer
|
77 |
+
# pass
|
78 |
+
# elif file_info["determined_type"] == "image":
|
79 |
+
# # Call your OCR/vision tool
|
80 |
+
# # details = self.ocr_tool.analyze(downloaded_file_path)
|
81 |
+
# # answer = self.reason_about_image(question_text, details)
|
82 |
+
# # return answer
|
83 |
+
# pass
|
84 |
+
else:
|
85 |
+
warning_msg = f"File type '{file_info['determined_type']}' (action: '{file_info['suggested_action']}') not yet handled for file: {os.path.basename(downloaded_file_path)}."
|
86 |
+
print(warning_msg)
|
87 |
+
# Fallback if file type is known but not handled, or if it's an unknown type
|
88 |
+
# You might still try to answer the question if it doesn't strictly depend on the file content.
|
89 |
+
return f"File received, but type '{file_info['determined_type']}' is not yet processed by this agent. Question: {question_text}"
|
90 |
+
|
91 |
+
|
92 |
+
# Fallback or question-only processing (if no file_url or file not handled)
|
93 |
+
# This is where you'd put logic for questions that don't involve files,
|
94 |
+
# or if a file was present but not processable by the current tools.
|
95 |
+
# For GAIA, many questions will have files.
|
96 |
+
if question_text:
|
97 |
+
# Placeholder for LLM call or other reasoning for text-only questions
|
98 |
+
default_answer = f"Received question: '{question_text}'. No specific file action taken or file not processable. (Default Response)"
|
99 |
+
print(f"Agent returning default text-based answer: {default_answer}")
|
100 |
+
return default_answer
|
101 |
+
else:
|
102 |
+
# Should not happen if GAIA questions always have text or file
|
103 |
+
return "No question text provided and no file processed."
|
104 |
+
|
105 |
+
|
106 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
107 |
"""
|
108 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
109 |
and displays the results.
|
110 |
"""
|
111 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
112 |
|
113 |
if profile:
|
114 |
+
username = f"{profile.username}"
|
115 |
print(f"User logged in: {username}")
|
116 |
else:
|
117 |
print("User not logged in.")
|
|
|
121 |
questions_url = f"{api_url}/questions"
|
122 |
submit_url = f"{api_url}/submit"
|
123 |
|
|
|
124 |
try:
|
125 |
agent = BasicAgent()
|
126 |
except Exception as e:
|
127 |
print(f"Error instantiating agent: {e}")
|
128 |
return f"Error initializing agent: {e}", None
|
129 |
+
|
130 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "local_run_no_space_id"
|
131 |
+
print(f"Agent code reference: {agent_code}")
|
132 |
|
|
|
133 |
print(f"Fetching questions from: {questions_url}")
|
134 |
try:
|
135 |
+
response = requests.get(questions_url, timeout=30) # Increased timeout
|
136 |
response.raise_for_status()
|
137 |
questions_data = response.json()
|
138 |
if not questions_data:
|
139 |
+
print("Fetched questions list is empty.")
|
140 |
+
return "Fetched questions list is empty or invalid format.", None
|
141 |
print(f"Fetched {len(questions_data)} questions.")
|
142 |
except requests.exceptions.RequestException as e:
|
143 |
print(f"Error fetching questions: {e}")
|
144 |
return f"Error fetching questions: {e}", None
|
145 |
except requests.exceptions.JSONDecodeError as e:
|
146 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
147 |
+
print(f"Response text (first 500 chars): {response.text[:500] if response else 'No response object'}")
|
148 |
+
return f"Error decoding server response for questions: {e}", None
|
149 |
except Exception as e:
|
150 |
print(f"An unexpected error occurred fetching questions: {e}")
|
151 |
return f"An unexpected error occurred fetching questions: {e}", None
|
152 |
|
|
|
153 |
results_log = []
|
154 |
answers_payload = []
|
155 |
print(f"Running agent on {len(questions_data)} questions...")
|
156 |
for item in questions_data:
|
157 |
task_id = item.get("task_id")
|
158 |
+
question_text = item.get("question") # Can be None if file_url is primary
|
159 |
+
file_url = item.get("file_url")
|
160 |
+
|
161 |
+
if not task_id:
|
162 |
+
print(f"Skipping item with missing task_id: {item}")
|
163 |
continue
|
164 |
+
|
165 |
+
# Prepare the input for the agent's __call__ method
|
166 |
+
agent_input_data = {"task_id": task_id, "question": question_text, "file_url": file_url}
|
167 |
+
|
168 |
try:
|
169 |
+
submitted_answer = agent(agent_input_data)
|
170 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
171 |
+
results_log.append({
|
172 |
+
"Task ID": task_id,
|
173 |
+
"Question": question_text if question_text else "N/A (File-based question)",
|
174 |
+
"File URL": file_url if file_url else "N/A",
|
175 |
+
"Submitted Answer": submitted_answer
|
176 |
+
})
|
177 |
except Exception as e:
|
178 |
+
print(f"Error running agent on task {task_id}: {e}")
|
179 |
+
results_log.append({
|
180 |
+
"Task ID": task_id,
|
181 |
+
"Question": question_text if question_text else "N/A (File-based question)",
|
182 |
+
"File URL": file_url if file_url else "N/A",
|
183 |
+
"Submitted Answer": f"AGENT ERROR: {e}"
|
184 |
+
})
|
185 |
|
186 |
if not answers_payload:
|
187 |
print("Agent did not produce any answers to submit.")
|
188 |
+
# Still return results_log if it has entries (e.g. all agent errors)
|
189 |
+
results_df = pd.DataFrame(results_log) if results_log else None
|
190 |
+
return "Agent did not produce any answers to submit.", results_df
|
191 |
|
|
|
192 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
193 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
194 |
print(status_update)
|
195 |
|
|
|
196 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
197 |
try:
|
198 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
214 |
error_json = e.response.json()
|
215 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
216 |
except requests.exceptions.JSONDecodeError:
|
217 |
+
error_detail += f" Response (first 500 chars): {e.response.text[:500]}"
|
218 |
status_message = f"Submission Failed: {error_detail}"
|
219 |
print(status_message)
|
220 |
results_df = pd.DataFrame(results_log)
|
|
|
238 |
|
239 |
# --- Build Gradio Interface using Blocks ---
|
240 |
with gr.Blocks() as demo:
|
241 |
+
gr.Markdown("# GAIA Benchmark Agent Runner")
|
242 |
gr.Markdown(
|
243 |
"""
|
244 |
**Instructions:**
|
245 |
|
246 |
+
1. Clone this space, then modify `src/` files (especially `BasicAgent` in `app.py`, and tool implementations) to define your agent's logic.
|
247 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
248 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
249 |
|
250 |
---
|
251 |
+
**Notes:**
|
252 |
+
- The agent's processing can take time, especially with file downloads and model inferences.
|
253 |
+
- This is a basic framework. For more complex agents, consider asynchronous operations, caching, and more robust error handling.
|
254 |
"""
|
255 |
)
|
256 |
|
|
|
259 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
260 |
|
261 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
262 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, interactive=False) # Set interactive=False for display
|
|
|
263 |
|
264 |
run_button.click(
|
265 |
fn=run_and_submit_all,
|
266 |
+
inputs=None, # LoginButton provides profile implicitly if used as input, but here it's handled by checking profile in the function
|
267 |
outputs=[status_output, results_table]
|
268 |
)
|
269 |
|
270 |
if __name__ == "__main__":
|
271 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
272 |
space_host_startup = os.getenv("SPACE_HOST")
|
273 |
+
space_id_startup = os.getenv("SPACE_ID")
|
274 |
|
275 |
if space_host_startup:
|
276 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
277 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
278 |
else:
|
279 |
+
print("ℹ️ SPACE_HOST environment variable not found (likely running locally).")
|
280 |
|
281 |
+
if space_id_startup:
|
282 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
283 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
284 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
285 |
else:
|
286 |
+
print("ℹ️ SPACE_ID environment variable not found (likely running locally). Repo URL cannot be determined.")
|
287 |
|
288 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
289 |
|
290 |
+
print("Launching Gradio Interface for GAIA Agent Evaluation...")
|
291 |
+
# Set server_name and server_port for local development if needed, e.g. demo.launch(server_name="0.0.0.0", server_port=7860)
|
292 |
+
# For Hugging Face Spaces, share=True is often handled by the platform.
|
293 |
+
# debug=True is useful for development.
|
294 |
+
demo.launch(debug=True)
|