Yago Bolivar
commited on
Commit
·
b785644
1
Parent(s):
42ae606
feat: implement run_and_submit_all function for agent evaluation and submission with Gradio UI integration
Browse files
app.py
CHANGED
@@ -1,6 +1,11 @@
|
|
1 |
from smolagents import CodeAgent, HfApiModel
|
2 |
from Gradio_UI import GradioUI
|
3 |
import yaml
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Import tool CLASSES from the src directory
|
6 |
from src.final_answer_tool import FinalAnswerTool
|
@@ -82,21 +87,174 @@ agent = EnhancedCodeAgent(
|
|
82 |
prompt_templates=prompt_templates
|
83 |
)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
try:
|
89 |
-
|
90 |
-
|
|
|
91 |
except Exception as e:
|
92 |
-
print(f"
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
try:
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from smolagents import CodeAgent, HfApiModel
|
2 |
from Gradio_UI import GradioUI
|
3 |
import yaml
|
4 |
+
import os
|
5 |
+
import requests
|
6 |
+
import pandas as pd
|
7 |
+
import gradio as gr
|
8 |
+
import time
|
9 |
|
10 |
# Import tool CLASSES from the src directory
|
11 |
from src.final_answer_tool import FinalAnswerTool
|
|
|
87 |
prompt_templates=prompt_templates
|
88 |
)
|
89 |
|
90 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
91 |
+
"""
|
92 |
+
Fetches all questions, runs the agent on them, submits answers,
|
93 |
+
and displays the results.
|
94 |
+
"""
|
95 |
+
space_id = os.getenv("SPACE_ID")
|
96 |
+
|
97 |
+
if profile:
|
98 |
+
username = f"{profile.username}"
|
99 |
+
print(f"User logged in: {username}")
|
100 |
+
else:
|
101 |
+
print("User not logged in.")
|
102 |
+
return "Please Login to Hugging Face with the button.", None
|
103 |
+
|
104 |
+
api_url = DEFAULT_API_URL
|
105 |
+
questions_url = f"{api_url}/questions"
|
106 |
+
submit_url = f"{api_url}/submit"
|
107 |
+
|
108 |
+
# 1. Use existing agent
|
109 |
try:
|
110 |
+
# agent is already instantiated globally
|
111 |
+
if not agent:
|
112 |
+
return "Error: Agent not initialized", None
|
113 |
except Exception as e:
|
114 |
+
print(f"Error accessing agent: {e}")
|
115 |
+
return f"Error accessing agent: {e}", None
|
116 |
+
|
117 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
118 |
+
print(agent_code)
|
119 |
+
|
120 |
+
# 2. Fetch Questions
|
121 |
+
print(f"Fetching questions from: {questions_url}")
|
122 |
+
try:
|
123 |
+
response = requests.get(questions_url, timeout=15)
|
124 |
+
response.raise_for_status()
|
125 |
+
questions_data = response.json()
|
126 |
+
if not questions_data:
|
127 |
+
print("Fetched questions list is empty.")
|
128 |
+
return "Fetched questions list is empty or invalid format.", None
|
129 |
+
print(f"Fetched {len(questions_data)} questions.")
|
130 |
+
except requests.exceptions.RequestException as e:
|
131 |
+
print(f"Error fetching questions: {e}")
|
132 |
+
return f"Error fetching questions: {e}", None
|
133 |
+
except requests.exceptions.JSONDecodeError as e:
|
134 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
135 |
+
print(f"Response text: {response.text[:500]}")
|
136 |
+
return f"Error decoding server response for questions: {e}", None
|
137 |
+
except Exception as e:
|
138 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
139 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
140 |
+
|
141 |
+
# 3. Run your Agent
|
142 |
+
results_log = []
|
143 |
+
answers_payload = []
|
144 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
145 |
+
for item in questions_data:
|
146 |
+
task_id = item.get("task_id")
|
147 |
+
question_text = item.get("question")
|
148 |
+
if not task_id or question_text is None:
|
149 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
150 |
+
continue
|
151 |
+
|
152 |
+
try:
|
153 |
+
submitted_answer = agent(question_text)
|
154 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
155 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
156 |
+
except Exception as e:
|
157 |
+
print(f"Error running agent on task {task_id}: {e}")
|
158 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
159 |
+
|
160 |
+
if not answers_payload:
|
161 |
+
print("Agent did not produce any answers to submit.")
|
162 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
163 |
+
|
164 |
+
# 4. Prepare Submission
|
165 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
166 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
167 |
+
print(status_update)
|
168 |
+
|
169 |
+
# 5. Submit
|
170 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
171 |
+
try:
|
172 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
173 |
+
response.raise_for_status()
|
174 |
+
result_data = response.json()
|
175 |
+
final_status = (
|
176 |
+
f"Submission Successful!\n"
|
177 |
+
f"User: {result_data.get('username')}\n"
|
178 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
179 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
180 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
181 |
+
)
|
182 |
+
print("Submission successful.")
|
183 |
+
results_df = pd.DataFrame(results_log)
|
184 |
+
return final_status, results_df
|
185 |
+
except requests.exceptions.HTTPError as e:
|
186 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
187 |
try:
|
188 |
+
error_json = e.response.json()
|
189 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
190 |
+
except requests.exceptions.JSONDecodeError:
|
191 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
192 |
+
status_message = f"Submission Failed: {error_detail}"
|
193 |
+
print(status_message)
|
194 |
+
results_df = pd.DataFrame(results_log)
|
195 |
+
return status_message, results_df
|
196 |
+
except requests.exceptions.Timeout:
|
197 |
+
status_message = "Submission Failed: The request timed out."
|
198 |
+
print(status_message)
|
199 |
+
results_df = pd.DataFrame(results_log)
|
200 |
+
return status_message, results_df
|
201 |
+
except requests.exceptions.RequestException as e:
|
202 |
+
status_message = f"Submission Failed: Network error - {e}"
|
203 |
+
print(status_message)
|
204 |
+
results_df = pd.DataFrame(results_log)
|
205 |
+
return status_message, results_df
|
206 |
+
except Exception as e:
|
207 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
208 |
+
print(status_message)
|
209 |
+
results_df = pd.DataFrame(results_log)
|
210 |
+
return status_message, results_df
|
211 |
+
|
212 |
+
# Launch the Gradio UI
|
213 |
+
if __name__ == '__main__':
|
214 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
215 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
216 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
217 |
+
space_id_startup = os.getenv("SPACE_ID")
|
218 |
+
|
219 |
+
if space_host_startup:
|
220 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
221 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
222 |
+
else:
|
223 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
224 |
+
|
225 |
+
if space_id_startup:
|
226 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
227 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
228 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
229 |
+
else:
|
230 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
231 |
+
|
232 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
233 |
+
|
234 |
+
# Build Gradio Interface using Blocks
|
235 |
+
with gr.Blocks() as demo:
|
236 |
+
gr.Markdown("# Enhanced Agent Evaluation Runner")
|
237 |
+
gr.Markdown(
|
238 |
+
"""
|
239 |
+
**Instructions:**
|
240 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc...
|
241 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
242 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
243 |
+
---
|
244 |
+
**Disclaimers:**
|
245 |
+
Once clicking on the "submit button, it can take quite some time (this is the time for the agent to go through all the questions).
|
246 |
+
"""
|
247 |
+
)
|
248 |
+
|
249 |
+
gr.LoginButton()
|
250 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
251 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
252 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
253 |
+
|
254 |
+
run_button.click(
|
255 |
+
fn=run_and_submit_all,
|
256 |
+
outputs=[status_output, results_table]
|
257 |
+
)
|
258 |
+
|
259 |
+
print("Launching Gradio Interface...")
|
260 |
+
demo.launch(debug=True, share=False)
|