from transformers import pipeline import librosa # Or soundfile import os # Initialize the ASR pipeline with a specific model # Using a smaller Whisper model for quicker setup, but larger models offer better accuracy asr_pipeline = pipeline( "automatic-speech-recognition", model="openai/whisper-tiny.en", ) def transcribe_audio(audio_filepath): """ Transcribes an audio file using the Hugging Face ASR pipeline. """ try: transcription = asr_pipeline(audio_filepath, return_timestamps=True) return transcription["text"] except Exception as e: return f"Error during transcription: {e}" # Example usage: if __name__ == "__main__": audio_file = "./downloaded_files/1f975693-876d-457b-a649-393859e79bf3.mp3" if os.path.exists(audio_file): # Check if the (placeholder or real) file exists print(f"Attempting to transcribe: {audio_file}") transcribed_text = transcribe_audio(audio_file) print(f"Transcription:\n{transcribed_text}") else: print(f"File not found: {audio_file}. Please provide a valid audio file.")