Aarifkhan commited on
Commit
d56bac8
·
verified ·
1 Parent(s): c29fb74

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -8
app.py CHANGED
@@ -9,14 +9,14 @@ from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5Tokenize
9
  dtype = torch.bfloat16
10
  device = "cuda"
11
 
12
- bfl_repo = "black-forest-labs/FLUX.1-schnell"
13
- scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler", revision="refs/pr/1")
14
  text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
15
  tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
16
- text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype, revision="refs/pr/1")
17
- tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype, revision="refs/pr/1")
18
  vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype, revision="refs/pr/1")
19
- transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype, revision="refs/pr/1")
20
 
21
  device = "cuda" if torch.cuda.is_available() else "cpu"
22
 
@@ -64,9 +64,7 @@ css="""
64
  with gr.Blocks(css=css) as demo:
65
 
66
  with gr.Column(elem_id="col-container"):
67
- gr.Markdown(f"""# FLUX.1 [schnell]
68
- 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
69
- [[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
70
  """)
71
 
72
  with gr.Row():
 
9
  dtype = torch.bfloat16
10
  device = "cuda"
11
 
12
+ bfl_repo = "UnfilteredAI/NSFW-Flux-v1"
13
+ scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler", revision="main")
14
  text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
15
  tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
16
+ text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype, revision="main")
17
+ tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype, revision="main")
18
  vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype, revision="refs/pr/1")
19
+ transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype, revision="main")
20
 
21
  device = "cuda" if torch.cuda.is_available() else "cpu"
22
 
 
64
  with gr.Blocks(css=css) as demo:
65
 
66
  with gr.Column(elem_id="col-container"):
67
+ gr.Markdown(f"""NSFW-Flux-v1 is a 12 billion parameter rectified flow transformer capable of generating images from text descriptions. Finetuned by UnfilteredAI, this model is designed to produce a wide range of images, including explicit and NSFW (Not Safe For Work) images from textual inputs
 
 
68
  """)
69
 
70
  with gr.Row():