File size: 14,487 Bytes
33e4db8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import streamlit as st
import pandas as pd
import numpy as np
import joblib
import re
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
from sklearn.metrics import classification_report, accuracy_score
from sklearn.model_selection import train_test_split
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# Download required NLTK data
@st.cache_resource
def download_nltk_data():
try:
nltk.data.find('tokenizers/punkt')
nltk.data.find('corpora/stopwords')
nltk.data.find('corpora/wordnet')
except LookupError:
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
nltk.download('wordnet', quiet=True)
nltk.download('omw-1.4', quiet=True)
download_nltk_data()
# Initialize preprocessing tools
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
def preprocess_text(text):
"""Clean and preprocess text for classification"""
if pd.isna(text):
return ""
text = str(text).lower()
text = re.sub(r'[^\w\s]', '', text) # remove punctuation
text = re.sub(r'\d+', '', text) # remove digits
words = text.split()
words = [lemmatizer.lemmatize(word) for word in words if word not in stop_words and len(word) > 2]
return ' '.join(words)
# Sample data for demonstration
@st.cache_data
def create_sample_data():
"""Create sample transaction data"""
sample_data = [
("Monthly apartment rent payment", "rent"),
("Grocery shopping at walmart", "groceries"),
("Electric bill payment", "utilities"),
("Netflix monthly subscription", "subscription"),
("Gas station fuel", "transportation"),
("Restaurant dinner", "dining"),
("Apartment rent for december", "rent"),
("Weekly grocery shopping", "groceries"),
("Water bill payment", "utilities"),
("Spotify premium subscription", "subscription"),
("Bus fare to work", "transportation"),
("Coffee shop breakfast", "dining"),
("Monthly rent payment", "rent"),
("Food shopping at target", "groceries"),
("Internet bill", "utilities"),
("Amazon Prime membership", "subscription"),
("Uber ride home", "transportation"),
("Pizza delivery", "dining"),
("Rent for apartment", "rent"),
("Supermarket groceries", "groceries"),
("Phone bill payment", "utilities"),
("YouTube premium", "subscription"),
("Train ticket", "transportation"),
("Fast food lunch", "dining"),
("Office supplies", "shopping"),
("Medical appointment", "healthcare"),
("Gym membership", "fitness"),
("Book purchase", "shopping"),
("Doctor visit", "healthcare"),
("Fitness class", "fitness"),
("Clothing purchase", "shopping"),
("Pharmacy prescription", "healthcare"),
("Personal trainer", "fitness"),
("Electronics store", "shopping"),
("Dentist appointment", "healthcare"),
("Yoga class", "fitness"),
("Gift for friend", "shopping"),
("Eye exam", "healthcare"),
("Swimming pool fee", "fitness"),
("Home improvement", "shopping")
]
df = pd.DataFrame(sample_data, columns=['purpose_text', 'transaction_type'])
return df
@st.cache_resource
def train_models(df):
"""Train multiple models and return the best one"""
# Preprocess data
df['cleaned_purpose'] = df['purpose_text'].apply(preprocess_text)
X = df["cleaned_purpose"]
y = df["transaction_type"]
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# TF-IDF Vectorization
vectorizer = TfidfVectorizer(max_features=1000, ngram_range=(1, 2))
X_train_vec = vectorizer.fit_transform(X_train)
X_test_vec = vectorizer.transform(X_test)
# Train models
models = {
"Naive Bayes": MultinomialNB(),
"Logistic Regression": LogisticRegression(max_iter=1000, random_state=42),
"SVM (LinearSVC)": LinearSVC(random_state=42)
}
results = {}
trained_models = {}
for name, model in models.items():
model.fit(X_train_vec, y_train)
y_pred = model.predict(X_test_vec)
acc = accuracy_score(y_test, y_pred)
results[name] = {
'accuracy': acc,
'predictions': y_pred,
'actual': y_test
}
trained_models[name] = model
# Find best model
best_model_name = max(results, key=lambda x: results[x]['accuracy'])
best_model = trained_models[best_model_name]
return best_model, vectorizer, results, trained_models
def main():
st.set_page_config(
page_title="Transaction Classification System",
page_icon="π³",
layout="wide"
)
st.title("π³ Transaction Purpose Classification")
st.markdown("---")
# Sidebar
st.sidebar.title("Navigation")
page = st.sidebar.radio("Choose a page:", ["π Home", "π Model Training", "π Classification", "π Model Comparison"])
# Load data
df = create_sample_data()
if page == "π Home":
st.header("Welcome to Transaction Classification System")
col1, col2 = st.columns(2)
with col1:
st.subheader("π Project Overview")
st.write("""
This system classifies financial transactions based on their purpose text using machine learning.
**Features:**
- Multiple ML models (Naive Bayes, Logistic Regression, SVM)
- Text preprocessing with NLTK
- Interactive model comparison
- Real-time transaction classification
""")
with col2:
st.subheader("π Sample Data")
st.dataframe(df.head(10))
st.subheader("π·οΈ Transaction Types")
type_counts = df['transaction_type'].value_counts()
fig = px.pie(values=type_counts.values, names=type_counts.index, title="Distribution of Transaction Types")
st.plotly_chart(fig, use_container_width=True)
elif page == "π Model Training":
st.header("Model Training & Evaluation")
# Train models
with st.spinner("Training models..."):
best_model, vectorizer, results, trained_models = train_models(df)
col1, col2 = st.columns(2)
with col1:
st.subheader("π Model Performance")
# Create results dataframe
results_df = pd.DataFrame({
'Model': list(results.keys()),
'Accuracy': [results[model]['accuracy'] for model in results.keys()]
})
fig = px.bar(results_df, x='Model', y='Accuracy', title="Model Accuracy Comparison")
fig.update_layout(yaxis_range=[0, 1])
st.plotly_chart(fig, use_container_width=True)
st.dataframe(results_df)
with col2:
st.subheader("π― Best Model Details")
best_model_name = max(results, key=lambda x: results[x]['accuracy'])
st.success(f"**Best Model:** {best_model_name}")
st.metric("Accuracy", f"{results[best_model_name]['accuracy']:.3f}")
# Classification report
st.subheader("π Classification Report")
y_test = results[best_model_name]['actual']
y_pred = results[best_model_name]['predictions']
report = classification_report(y_test, y_pred, output_dict=True)
report_df = pd.DataFrame(report).transpose()
st.dataframe(report_df.round(3))
# Store models in session state
st.session_state.best_model = best_model
st.session_state.vectorizer = vectorizer
st.session_state.trained_models = trained_models
elif page == "π Classification":
st.header("Classify New Transaction")
# Check if models are trained
if 'best_model' not in st.session_state:
st.warning("Please train the models first by visiting the 'Model Training' page.")
return
# Input form
with st.form("classification_form"):
purpose_text = st.text_area("Enter transaction purpose:",
placeholder="e.g., Monthly apartment rent payment",
height=100)
submitted = st.form_submit_button("Classify Transaction")
if submitted and purpose_text:
# Preprocess input
cleaned_text = preprocess_text(purpose_text)
# Make prediction
vectorized_text = st.session_state.vectorizer.transform([cleaned_text])
prediction = st.session_state.best_model.predict(vectorized_text)[0]
prediction_proba = st.session_state.best_model.predict_proba(vectorized_text)[0]
# Get class labels
classes = st.session_state.best_model.classes_
# Display results
col1, col2 = st.columns(2)
with col1:
st.subheader("π― Classification Result")
st.success(f"**Predicted Type:** {prediction}")
st.info(f"**Original Text:** {purpose_text}")
st.info(f"**Processed Text:** {cleaned_text}")
with col2:
st.subheader("π Prediction Confidence")
proba_df = pd.DataFrame({
'Transaction Type': classes,
'Probability': prediction_proba
}).sort_values('Probability', ascending=False)
fig = px.bar(proba_df, x='Probability', y='Transaction Type',
orientation='h', title="Prediction Probabilities")
st.plotly_chart(fig, use_container_width=True)
elif page == "π Model Comparison":
st.header("Detailed Model Comparison")
# Check if models are trained
if 'trained_models' not in st.session_state:
st.warning("Please train the models first by visiting the 'Model Training' page.")
return
# Model comparison
st.subheader("π Model Analysis")
# Get sample predictions for comparison
sample_texts = [
"Monthly rent payment",
"Grocery shopping",
"Netflix subscription",
"Gas station",
"Restaurant dinner"
]
comparison_data = []
for text in sample_texts:
cleaned = preprocess_text(text)
vectorized = st.session_state.vectorizer.transform([cleaned])
row = {'Text': text, 'Cleaned': cleaned}
for model_name, model in st.session_state.trained_models.items():
prediction = model.predict(vectorized)[0]
row[model_name] = prediction
comparison_data.append(row)
comparison_df = pd.DataFrame(comparison_data)
st.dataframe(comparison_df, use_container_width=True)
# LLM/Transformer approach explanation
st.subheader("π€ Large Language Model Approach")
with st.expander("Click to see LLM implementation strategy"):
st.markdown("""
### Using Transformer Models for Transaction Classification
**Approach:**
1. **Pre-trained Model Selection**: Use `bert-base-uncased` or `distilbert-base-uncased`
2. **Tokenization**: Use HuggingFace's tokenizer for the selected model
3. **Model Architecture**: Add a classification head on top of the transformer
4. **Fine-tuning**: Train on labeled transaction data
**Code Example:**
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import Trainer, TrainingArguments
# Load pre-trained model
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
model = AutoModelForSequenceClassification.from_pretrained(
'bert-base-uncased',
num_labels=len(unique_labels)
)
# Tokenize data
def tokenize_function(examples):
return tokenizer(examples['purpose_text'], truncation=True, padding=True)
# Fine-tune model
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
warmup_steps=500,
weight_decay=0.01,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
```
**Benefits:**
- Better semantic understanding
- Handles context better than TF-IDF
- Can capture complex patterns
- State-of-the-art performance
**Drawbacks:**
- Requires more computational resources
- Longer training time
- More complex deployment
""")
if __name__ == "__main__":
main() |