Spaces:
Sleeping
Sleeping
File size: 7,686 Bytes
02001f5 605629e bfc9fea bf01465 02001f5 af316a5 bfc9fea af316a5 02001f5 a233bbd 8bcdd21 a233bbd 8bcdd21 aa86cbd 02001f5 aa86cbd 02001f5 bf01465 02001f5 6052c4b 02001f5 bfc9fea 02001f5 bfc9fea bf01465 bfc9fea 38a7793 bfc9fea 38a7793 bfc9fea 38a7793 bf01465 38a7793 34fd92b bf01465 38a7793 bfc9fea 605629e bfc9fea 605629e bfc9fea af316a5 bfc9fea bf01465 bfc9fea bf01465 bfc9fea bf01465 bfc9fea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import streamlit as st
from PIL import Image
import torch
from torchvision import models, transforms
import json
import os
import io
import numpy as np
from streamlit_webrtc import webrtc_streamer, WebRtcMode, RTCConfiguration
import av
import cv2
import timm
# Configure Streamlit
st.set_page_config(
page_title="Butterfly Identifier/Liblikamaja ID",
page_icon="🦋",
layout="wide"
)
# Load class names
with open("class_names.txt", "r") as f:
class_names = [line.strip() for line in f.readlines()]
# Load butterfly info
try:
with open("butterfly_info.json", "r") as f:
butterfly_info = json.load(f)
except:
butterfly_info = {}
@st.cache_resource
def load_model():
MODEL_PATH = "butterfly_classifier.pth"
if not os.path.exists(MODEL_PATH):
st.error("Model file not found. Please upload butterfly_classifier.pth to your space.")
return None
# Load the checkpoint first to check the actual number of classes
checkpoint = torch.load(MODEL_PATH, map_location="cpu")
# Get the number of classes from the saved model weights
if 'classifier.weight' in checkpoint:
num_classes_in_model = checkpoint['classifier.weight'].shape[0]
elif 'fc.weight' in checkpoint: # Alternative naming
num_classes_in_model = checkpoint['fc.weight'].shape[0]
else:
# Fallback: assume it matches class_names
num_classes_in_model = len(class_names)
# Create model with the correct number of classes from the saved model
model = timm.create_model('efficientnet_b0', pretrained=False, num_classes=num_classes_in_model)
model.load_state_dict(checkpoint)
model.eval()
return model
# Load the model
model = load_model()
if model is None:
st.stop()
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
def predict_butterfly(image):
"""Predict butterfly species from image"""
if image is None:
return None, None
# Convert to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Preprocess
input_tensor = transform(image).unsqueeze(0)
# Predict
with torch.no_grad():
output = model(input_tensor)
probabilities = torch.nn.functional.softmax(output[0], dim=0)
confidence, pred = torch.max(probabilities, 0)
predicted_class = class_names[pred.item()]
return predicted_class, confidence.item()
# Video frame callback for live camera
class VideoProcessor:
def __init__(self):
self.prediction_text = ""
self.frame_count = 0
def recv(self, frame):
img = frame.to_ndarray(format="bgr24")
# Only process every 30th frame for performance
self.frame_count += 1
if self.frame_count % 30 == 0:
# Convert BGR to RGB
rgb_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
predicted_class, confidence = predict_butterfly(rgb_img)
if predicted_class and confidence > 0.8: # Only show if confidence > 80%
self.prediction_text = f"{predicted_class} ({confidence:.2f})"
# Draw prediction on frame
if self.prediction_text:
cv2.putText(img, self.prediction_text, (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
return av.VideoFrame.from_ndarray(img, format="bgr24")
# Streamlit UI
st.title("🦋 Butterfly Identifier / Liblikamaja ID")
st.write("Identify butterflies using your camera or by uploading an image!")
# Create tabs for different input methods
tab1, tab2 = st.tabs(["📷 Live Camera", "📁 Upload Image"])
with tab1:
st.header("Camera Capture")
st.write("Take a photo of a butterfly for identification!")
# Use Streamlit's built-in camera input
camera_photo = st.camera_input("Take a picture of a butterfly")
if camera_photo is not None:
try:
# Convert to PIL Image
image = Image.open(camera_photo).convert("RGB")
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Captured Image", use_column_width=True)
with col2:
predicted_class, confidence = predict_butterfly(image)
if predicted_class and confidence >= 0.80: # Only show if confidence >= 80%
st.success(f"**Prediction: {predicted_class}**")
st.info(f"Confidence: {confidence:.2%}")
#if predicted_class in butterfly_info:
# st.write("**Species Information:**")
# st.write(butterfly_info[predicted_class]["description"])
else:
st.warning("⚠️ **Image not clear - Unable to identify butterfly**")
st.info(f"Confidence too low: {confidence:.1%}")
st.markdown("**Tips for better results:**")
st.markdown("- Use better lighting")
st.markdown("- Get closer to the butterfly")
st.markdown("- Ensure the butterfly is clearly visible")
st.markdown("- Avoid blurry or dark images")
except Exception as e:
st.error(f"Error processing image: {str(e)}")
with tab2:
st.header("Upload Image")
st.write("Upload a clear photo of a butterfly for identification")
uploaded_file = st.file_uploader(
"Choose an image...",
type=["jpg", "jpeg", "png"],
help="Upload a clear photo of a butterfly"
)
if uploaded_file is not None:
try:
# Read file directly into memory
image_bytes = uploaded_file.read()
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Uploaded Image", use_column_width=True)
with col2:
predicted_class, confidence = predict_butterfly(image)
if predicted_class and confidence >= 0.80: # Only show if confidence >= 80%
st.success(f"**Prediction: {predicted_class}**")
st.info(f"Confidence: {confidence:.2%}")
if predicted_class in butterfly_info:
st.write("**Species Information:**")
st.write(butterfly_info[predicted_class]["description"])
else:
st.warning("⚠️ **Image not clear - Unable to identify butterfly**")
st.info(f"Confidence too low: {confidence:.1%}")
st.markdown("**Tips for better results:**")
st.markdown("- Use better lighting")
st.markdown("- Get closer to the butterfly")
st.markdown("- Ensure the butterfly is clearly visible")
st.markdown("- Avoid blurry or dark images")
except Exception as e:
st.error(f"Error processing image: {str(e)}")
# Add footer with instructions
st.markdown("---")
st.markdown("### How to use:")
st.markdown("1. **Camera Capture**: Take a photo using your device camera")
st.markdown("2. **Upload Image**: Choose a butterfly photo from your device")
st.markdown("3. **Best Results**: Use clear, well-lit photos with the butterfly clearly visible") |