Spaces:
Sleeping
Sleeping
Update streamlit_app.py
Browse files- streamlit_app.py +5 -2
streamlit_app.py
CHANGED
@@ -61,7 +61,7 @@ def load_model():
|
|
61 |
model_state_dict = checkpoint['model_state_dict'] if 'model_state_dict' in checkpoint else checkpoint
|
62 |
num_classes = len(class_names)
|
63 |
|
64 |
-
# Detect model
|
65 |
classifier_input = model_state_dict['classifier.weight'].shape[1]
|
66 |
feature_map = {
|
67 |
1280: 'efficientnet_b0',
|
@@ -74,7 +74,7 @@ def load_model():
|
|
74 |
2560: 'efficientnet_b7'
|
75 |
}
|
76 |
model_name = feature_map.get(classifier_input, 'efficientnet_b3')
|
77 |
-
|
78 |
|
79 |
model = timm.create_model(model_name, pretrained=False, num_classes=num_classes, drop_rate=0.4, drop_path_rate=0.3)
|
80 |
model.load_state_dict(model_state_dict, strict=False)
|
@@ -84,9 +84,12 @@ def load_model():
|
|
84 |
st.error(f"Error loading model: {str(e)}")
|
85 |
return None
|
86 |
|
|
|
87 |
|
88 |
def predict_butterfly(image, threshold=0.5):
|
89 |
try:
|
|
|
|
|
90 |
if image is None:
|
91 |
return None, None
|
92 |
if isinstance(image, np.ndarray):
|
|
|
61 |
model_state_dict = checkpoint['model_state_dict'] if 'model_state_dict' in checkpoint else checkpoint
|
62 |
num_classes = len(class_names)
|
63 |
|
64 |
+
# Detect model from classifier shape
|
65 |
classifier_input = model_state_dict['classifier.weight'].shape[1]
|
66 |
feature_map = {
|
67 |
1280: 'efficientnet_b0',
|
|
|
74 |
2560: 'efficientnet_b7'
|
75 |
}
|
76 |
model_name = feature_map.get(classifier_input, 'efficientnet_b3')
|
77 |
+
st.info(f"Detected model architecture: {model_name}")
|
78 |
|
79 |
model = timm.create_model(model_name, pretrained=False, num_classes=num_classes, drop_rate=0.4, drop_path_rate=0.3)
|
80 |
model.load_state_dict(model_state_dict, strict=False)
|
|
|
84 |
st.error(f"Error loading model: {str(e)}")
|
85 |
return None
|
86 |
|
87 |
+
model = load_model()
|
88 |
|
89 |
def predict_butterfly(image, threshold=0.5):
|
90 |
try:
|
91 |
+
if model is None:
|
92 |
+
raise ValueError("Model is not loaded.")
|
93 |
if image is None:
|
94 |
return None, None
|
95 |
if isinstance(image, np.ndarray):
|