Spaces:
Sleeping
Sleeping
Update streamlit_app.py
Browse files- streamlit_app.py +55 -292
streamlit_app.py
CHANGED
@@ -1,18 +1,20 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
-
from torchvision import models, transforms
|
5 |
import json
|
6 |
import os
|
7 |
import io
|
8 |
import numpy as np
|
9 |
import timm
|
|
|
|
|
10 |
import warnings
|
11 |
warnings.filterwarnings('ignore')
|
12 |
|
13 |
# Configure Streamlit
|
14 |
st.set_page_config(
|
15 |
-
page_title="Butterfly Identifier/ Liblikamaja ID",
|
16 |
page_icon="🦋",
|
17 |
layout="wide"
|
18 |
)
|
@@ -40,360 +42,121 @@ def load_butterfly_info():
|
|
40 |
|
41 |
butterfly_info = load_butterfly_info()
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
# EfficientNet feature mapping (updated based on actual timm implementations)
|
51 |
-
efficientnet_features = {
|
52 |
-
1280: 'efficientnet_b0',
|
53 |
-
1408: 'efficientnet_b1',
|
54 |
-
1536: 'efficientnet_b2',
|
55 |
-
1792: 'efficientnet_b3', # Your model has 1792 features
|
56 |
-
1920: 'efficientnet_b4',
|
57 |
-
2048: 'efficientnet_b5',
|
58 |
-
2304: 'efficientnet_b6',
|
59 |
-
2560: 'efficientnet_b7'
|
60 |
-
}
|
61 |
-
|
62 |
-
model_name = efficientnet_features.get(classifier_input_features, 'efficientnet_b3')
|
63 |
-
print(f"Detected model architecture: {model_name} (classifier features: {classifier_input_features})")
|
64 |
-
return model_name, classifier_input_features
|
65 |
-
|
66 |
-
# Check bn2 layer (final batch norm before classifier)
|
67 |
-
if 'bn2.weight' in model_state_dict:
|
68 |
-
bn2_features = model_state_dict['bn2.weight'].shape[0]
|
69 |
-
print(f"bn2 features: {bn2_features}")
|
70 |
-
|
71 |
-
# This should match the classifier input features
|
72 |
-
bn2_mapping = {
|
73 |
-
1280: 'efficientnet_b0',
|
74 |
-
1408: 'efficientnet_b1',
|
75 |
-
1536: 'efficientnet_b2',
|
76 |
-
1792: 'efficientnet_b3', # Your model shows 1792
|
77 |
-
1920: 'efficientnet_b4',
|
78 |
-
2048: 'efficientnet_b5',
|
79 |
-
2304: 'efficientnet_b6',
|
80 |
-
2560: 'efficientnet_b7'
|
81 |
-
}
|
82 |
-
|
83 |
-
model_name = bn2_mapping.get(bn2_features, 'efficientnet_b3')
|
84 |
-
print(f"Detected model architecture from bn2: {model_name}")
|
85 |
-
return model_name, bn2_features
|
86 |
-
|
87 |
-
# Default to B3 based on your error logs
|
88 |
-
print("Could not detect model architecture, defaulting to efficientnet_b3")
|
89 |
-
return 'efficientnet_b3', 1792
|
90 |
|
|
|
91 |
@st.cache_resource
|
92 |
def load_model():
|
93 |
MODEL_PATH = "butterfly_classifier.pth"
|
94 |
-
|
95 |
-
# Check if model file exists
|
96 |
if not os.path.exists(MODEL_PATH):
|
97 |
-
st.error(
|
98 |
-
return None
|
99 |
-
|
100 |
-
# Check file size
|
101 |
-
file_size = os.path.getsize(MODEL_PATH)
|
102 |
-
if file_size < 1000: # Less than 1KB suggests LFS pointer file
|
103 |
-
st.error(f"""
|
104 |
-
🚨 **Git LFS Issue Detected**
|
105 |
-
|
106 |
-
The model file appears to be a Git LFS pointer file (size: {file_size} bytes).
|
107 |
-
This means the actual model wasn't downloaded properly.
|
108 |
-
|
109 |
-
**To fix this:**
|
110 |
-
1. Run: `git lfs pull` in your repository
|
111 |
-
2. Or download the model file directly from your storage
|
112 |
-
""")
|
113 |
return None
|
114 |
-
|
115 |
try:
|
116 |
-
# Load checkpoint
|
117 |
-
print(f"Loading model from {MODEL_PATH} (size: {file_size} bytes)")
|
118 |
checkpoint = torch.load(MODEL_PATH, map_location='cpu')
|
119 |
-
|
120 |
-
# Extract model components
|
121 |
-
if 'model_state_dict' in checkpoint:
|
122 |
-
model_state_dict = checkpoint['model_state_dict']
|
123 |
-
saved_class_names = checkpoint.get('class_names', class_names)
|
124 |
-
else:
|
125 |
-
model_state_dict = checkpoint
|
126 |
-
saved_class_names = class_names
|
127 |
-
|
128 |
-
# Debug: Print some key layer shapes
|
129 |
-
print("Key layer shapes in checkpoint:")
|
130 |
-
for key in ['conv_stem.weight', 'bn1.weight', 'bn2.weight', 'classifier.weight']:
|
131 |
-
if key in model_state_dict:
|
132 |
-
print(f" {key}: {model_state_dict[key].shape}")
|
133 |
-
|
134 |
-
# Auto-detect the correct model architecture
|
135 |
-
model_name, expected_features = detect_model_architecture(model_state_dict)
|
136 |
-
|
137 |
-
# Get number of classes
|
138 |
num_classes = len(class_names)
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
print(f"Loading {model_name} with {num_classes} classes")
|
143 |
-
|
144 |
-
# Create model with correct architecture
|
145 |
-
# Try different parameter combinations that might have been used during training
|
146 |
-
model_configs = [
|
147 |
-
# Most likely configuration based on your checkpoint
|
148 |
-
{'drop_rate': 0.4, 'drop_path_rate': 0.3},
|
149 |
-
{'drop_rate': 0.3, 'drop_path_rate': 0.2},
|
150 |
-
{'drop_rate': 0.2, 'drop_path_rate': 0.1},
|
151 |
-
{'drop_rate': 0.0, 'drop_path_rate': 0.0}, # Default
|
152 |
-
]
|
153 |
-
|
154 |
-
model = None
|
155 |
-
for config in model_configs:
|
156 |
-
try:
|
157 |
-
print(f"Trying model config: {config}")
|
158 |
-
model = timm.create_model(
|
159 |
-
model_name,
|
160 |
-
pretrained=False,
|
161 |
-
num_classes=num_classes,
|
162 |
-
**config
|
163 |
-
)
|
164 |
-
|
165 |
-
# Try loading with strict=True first
|
166 |
-
model.load_state_dict(model_state_dict, strict=True)
|
167 |
-
print(f"Model loaded successfully with config: {config}")
|
168 |
-
break
|
169 |
-
|
170 |
-
except RuntimeError as e:
|
171 |
-
print(f"Config {config} failed: {e}")
|
172 |
-
continue
|
173 |
-
|
174 |
-
# If strict loading failed for all configs, try with strict=False
|
175 |
-
if model is None:
|
176 |
-
print("All strict loading attempts failed, trying with strict=False")
|
177 |
-
model = timm.create_model(
|
178 |
-
model_name,
|
179 |
-
pretrained=False,
|
180 |
-
num_classes=num_classes,
|
181 |
-
drop_rate=0.4,
|
182 |
-
drop_path_rate=0.3
|
183 |
-
)
|
184 |
-
|
185 |
-
missing_keys, unexpected_keys = model.load_state_dict(model_state_dict, strict=False)
|
186 |
-
|
187 |
-
if missing_keys:
|
188 |
-
print(f"Missing keys: {missing_keys}")
|
189 |
-
st.warning(f"⚠️ Some model weights were not loaded: {len(missing_keys)} missing keys")
|
190 |
-
|
191 |
-
if unexpected_keys:
|
192 |
-
print(f"Unexpected keys: {unexpected_keys}")
|
193 |
-
st.warning(f"⚠️ Some checkpoint keys were not used: {len(unexpected_keys)} unexpected keys")
|
194 |
-
|
195 |
-
# Verify the model loaded correctly
|
196 |
model.eval()
|
197 |
-
|
198 |
-
# Test with a dummy input to make sure everything works
|
199 |
-
dummy_input = torch.randn(1, 3, 224, 224)
|
200 |
-
with torch.no_grad():
|
201 |
-
try:
|
202 |
-
dummy_output = model(dummy_input)
|
203 |
-
print(f"Model test successful. Output shape: {dummy_output.shape}")
|
204 |
-
|
205 |
-
# Verify output shape matches expected classes
|
206 |
-
if dummy_output.shape[1] != num_classes:
|
207 |
-
st.error(f"Model output mismatch: expected {num_classes} classes, got {dummy_output.shape[1]}")
|
208 |
-
return None
|
209 |
-
|
210 |
-
except Exception as e:
|
211 |
-
print(f"Model test failed: {e}")
|
212 |
-
st.error(f"Model validation failed: {e}")
|
213 |
-
return None
|
214 |
-
|
215 |
-
#st.success(f"✅ Successfully loaded {model_name} with {num_classes} classes")
|
216 |
return model
|
217 |
-
|
218 |
except Exception as e:
|
219 |
st.error(f"Error loading model: {str(e)}")
|
220 |
-
st.error(f"Model file size: {file_size} bytes")
|
221 |
-
|
222 |
-
# Additional debugging info
|
223 |
-
try:
|
224 |
-
checkpoint = torch.load(MODEL_PATH, map_location='cpu')
|
225 |
-
if 'model_state_dict' in checkpoint:
|
226 |
-
model_keys = list(checkpoint['model_state_dict'].keys())
|
227 |
-
print(f"Available keys in checkpoint: {model_keys[:10]}...")
|
228 |
-
|
229 |
-
# Show the problematic layer shapes
|
230 |
-
state_dict = checkpoint['model_state_dict']
|
231 |
-
if 'classifier.weight' in state_dict and 'bn2.weight' in state_dict:
|
232 |
-
classifier_features = state_dict['classifier.weight'].shape[1]
|
233 |
-
bn2_features = state_dict['bn2.weight'].shape[0]
|
234 |
-
print(f"Classifier input features: {classifier_features}")
|
235 |
-
print(f"bn2 features: {bn2_features}")
|
236 |
-
|
237 |
-
if classifier_features != bn2_features:
|
238 |
-
st.error(f"Architecture mismatch: classifier expects {classifier_features} features, but bn2 has {bn2_features}")
|
239 |
-
|
240 |
-
except Exception as debug_e:
|
241 |
-
print(f"Debug info failed: {debug_e}")
|
242 |
-
|
243 |
return None
|
244 |
|
245 |
-
# Load the model
|
246 |
model = load_model()
|
247 |
|
248 |
-
if model is None:
|
249 |
-
st.error("⚠️ **Model Loading Failed**")
|
250 |
-
st.info("**Possible solutions:**")
|
251 |
-
st.markdown("1. **Git LFS issue**: Run `git lfs pull` to download the actual model file")
|
252 |
-
st.markdown("2. **Architecture mismatch**: The model was trained with different parameters")
|
253 |
-
st.markdown("3. **Corrupted file**: Re-download or re-train the model")
|
254 |
-
st.markdown("4. **Check the console/logs** for detailed error information")
|
255 |
-
st.stop()
|
256 |
-
|
257 |
-
# Transform for preprocessing (same as training)
|
258 |
-
transform = transforms.Compose([
|
259 |
-
transforms.Resize((224, 224)),
|
260 |
-
transforms.ToTensor(),
|
261 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
262 |
-
])
|
263 |
-
|
264 |
def predict_butterfly(image, threshold=0.5):
|
265 |
-
"""Predict butterfly species from image"""
|
266 |
try:
|
267 |
if image is None:
|
268 |
return None, None
|
269 |
-
|
270 |
if isinstance(image, np.ndarray):
|
271 |
image = Image.fromarray(image)
|
272 |
if image.mode != 'RGB':
|
273 |
image = image.convert('RGB')
|
274 |
-
|
275 |
-
input_tensor =
|
276 |
-
|
277 |
with torch.no_grad():
|
278 |
output = model(input_tensor)
|
279 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
280 |
-
|
281 |
confidence, pred = torch.max(probabilities, 0)
|
282 |
if confidence.item() < threshold:
|
283 |
return None, confidence.item()
|
284 |
-
|
285 |
predicted_class = class_names[pred.item()]
|
286 |
return predicted_class, confidence.item()
|
287 |
-
|
288 |
except Exception as e:
|
289 |
st.error(f"Prediction error: {str(e)}")
|
290 |
return None, None
|
291 |
|
292 |
-
|
293 |
# UI Code
|
294 |
-
st.title("🦋 Liblikamaja ID/ Butterfly Identifier")
|
295 |
-
st.write("Tuvasta liblikaid oma kaamera abil või laadi üles pilt
|
296 |
-
|
297 |
-
# Show model info
|
298 |
-
#if model is not None:
|
299 |
-
#st.info(f"📊 Model loaded: {len(class_names)} butterfly species recognized")
|
300 |
|
301 |
-
|
302 |
-
tab1, tab2 = st.tabs(["📷 Live Camera", "📁 Upload Image"])
|
303 |
|
304 |
with tab1:
|
305 |
-
st.header("Kaamera jäädvustamine/ Camera Capture")
|
306 |
-
st.write("Take a photo of a butterfly for identification
|
307 |
-
|
308 |
-
camera_photo = st.camera_input("Pildista liblikat/ Take a picture of a butterfly")
|
309 |
-
|
310 |
if camera_photo is not None:
|
311 |
try:
|
312 |
image = Image.open(camera_photo).convert("RGB")
|
313 |
-
|
314 |
col1, col2 = st.columns(2)
|
315 |
-
|
316 |
with col1:
|
317 |
-
st.image(image, caption="Captured Image
|
318 |
-
|
319 |
with col2:
|
320 |
-
with st.spinner("
|
321 |
predicted_class, confidence = predict_butterfly(image)
|
322 |
-
|
323 |
if predicted_class and confidence >= 0.50:
|
324 |
-
st.success(f"**
|
325 |
-
|
|
|
|
|
326 |
else:
|
327 |
-
st.warning("⚠️
|
328 |
-
st.
|
329 |
-
|
330 |
-
st.markdown("
|
331 |
-
st.markdown("-
|
332 |
-
st.markdown("- Ensure the butterfly is clearly visible/ Veenduge, et liblikas oleks selgelt nähtav")
|
333 |
-
st.markdown("- Avoid blurry or dark images/ Vältige uduseid või tumedaid pilte")
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
except Exception as e:
|
338 |
st.error(f"Error processing image: {str(e)}")
|
339 |
|
340 |
with tab2:
|
341 |
-
st.header("
|
342 |
-
st.write("Upload a clear photo of a butterfly for identification
|
343 |
-
|
344 |
-
uploaded_file = st.file_uploader(
|
345 |
-
"Choose an image/ Valige pilt...",
|
346 |
-
type=["jpg", "jpeg", "png"],
|
347 |
-
help="Upload a clear photo of a butterfly/ Laadi üles selge foto liblikast"
|
348 |
-
)
|
349 |
-
|
350 |
if uploaded_file is not None:
|
351 |
try:
|
352 |
image_bytes = uploaded_file.read()
|
353 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
354 |
-
|
355 |
col1, col2 = st.columns(2)
|
356 |
-
|
357 |
with col1:
|
358 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
359 |
-
|
360 |
with col2:
|
361 |
-
with st.spinner("Analyzing image..."):
|
362 |
predicted_class, confidence = predict_butterfly(image)
|
363 |
-
|
364 |
-
|
365 |
-
if
|
366 |
-
st.
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
#st.info(f"Best guess: {predicted_class} ({confidence:.1%})")
|
375 |
-
st.markdown("**Tips for better results/ Näpunäited paremate tulemuste saavutamiseks:**")
|
376 |
-
st.markdown("- Use better lighting/ Kasutage paremat valgustust")
|
377 |
-
st.markdown("- Ensure the butterfly is clearly visible/ Veenduge, et liblikas oleks selgelt nähtav")
|
378 |
-
st.markdown("- Avoid blurry or dark images/ Vältige uduseid või tumedaid pilte")
|
379 |
-
|
380 |
-
|
381 |
except Exception as e:
|
382 |
st.error(f"Error processing image: {str(e)}")
|
383 |
|
384 |
-
#
|
385 |
st.markdown("---")
|
386 |
-
st.markdown("### How to use
|
387 |
-
st.markdown("1. **Camera Capture**: Take a photo using your device camera
|
388 |
-
st.markdown("2. **Upload Image**: Choose a butterfly photo from your device
|
389 |
-
st.markdown("3. **
|
390 |
|
391 |
-
# Debug info (only show if there are issues)
|
392 |
-
#if st.checkbox("Show debug information"):
|
393 |
-
# st.markdown("### Debug Information")
|
394 |
-
# st.write(f"Number of classes: {len(class_names)}")
|
395 |
-
# st.write(f"Model loaded: {model is not None}")
|
396 |
-
# if model:
|
397 |
-
# st.write("Model architecture successfully detected and loaded")
|
398 |
-
# else:
|
399 |
-
# st.write("❌ Model failed to load - check console for details")
|
|
|
1 |
+
# Full corrected bilingual Streamlit app for Butterfly Identifier
|
2 |
import streamlit as st
|
3 |
from PIL import Image
|
4 |
import torch
|
|
|
5 |
import json
|
6 |
import os
|
7 |
import io
|
8 |
import numpy as np
|
9 |
import timm
|
10 |
+
import albumentations as A
|
11 |
+
from albumentations.pytorch import ToTensorV2
|
12 |
import warnings
|
13 |
warnings.filterwarnings('ignore')
|
14 |
|
15 |
# Configure Streamlit
|
16 |
st.set_page_config(
|
17 |
+
page_title="Butterfly Identifier / Liblikamaja ID",
|
18 |
page_icon="🦋",
|
19 |
layout="wide"
|
20 |
)
|
|
|
42 |
|
43 |
butterfly_info = load_butterfly_info()
|
44 |
|
45 |
+
# Define transform matching training pipeline
|
46 |
+
inference_transform = A.Compose([
|
47 |
+
A.Resize(224, 224),
|
48 |
+
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
49 |
+
ToTensorV2()
|
50 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Load the model
|
53 |
@st.cache_resource
|
54 |
def load_model():
|
55 |
MODEL_PATH = "butterfly_classifier.pth"
|
|
|
|
|
56 |
if not os.path.exists(MODEL_PATH):
|
57 |
+
st.error("Model file not found!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
return None
|
|
|
59 |
try:
|
|
|
|
|
60 |
checkpoint = torch.load(MODEL_PATH, map_location='cpu')
|
61 |
+
model_state_dict = checkpoint['model_state_dict'] if 'model_state_dict' in checkpoint else checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
num_classes = len(class_names)
|
63 |
+
model = timm.create_model('efficientnet_b3', pretrained=False, num_classes=num_classes, drop_rate=0.4, drop_path_rate=0.3)
|
64 |
+
model.load_state_dict(model_state_dict, strict=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
return model
|
|
|
67 |
except Exception as e:
|
68 |
st.error(f"Error loading model: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
return None
|
70 |
|
|
|
71 |
model = load_model()
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def predict_butterfly(image, threshold=0.5):
|
|
|
74 |
try:
|
75 |
if image is None:
|
76 |
return None, None
|
|
|
77 |
if isinstance(image, np.ndarray):
|
78 |
image = Image.fromarray(image)
|
79 |
if image.mode != 'RGB':
|
80 |
image = image.convert('RGB')
|
81 |
+
transformed = inference_transform(image=np.array(image))
|
82 |
+
input_tensor = transformed['image'].unsqueeze(0)
|
|
|
83 |
with torch.no_grad():
|
84 |
output = model(input_tensor)
|
85 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
|
|
86 |
confidence, pred = torch.max(probabilities, 0)
|
87 |
if confidence.item() < threshold:
|
88 |
return None, confidence.item()
|
|
|
89 |
predicted_class = class_names[pred.item()]
|
90 |
return predicted_class, confidence.item()
|
|
|
91 |
except Exception as e:
|
92 |
st.error(f"Prediction error: {str(e)}")
|
93 |
return None, None
|
94 |
|
|
|
95 |
# UI Code
|
96 |
+
st.title("🦋 Liblikamaja ID / Butterfly Identifier")
|
97 |
+
st.write("Tuvasta liblikaid oma kaamera abil või laadi üles pilt! / Identify butterflies using your camera or by uploading an image!")
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
tab1, tab2 = st.tabs(["📷 Live Camera / Kaamera", "📁 Upload Image / Laadi üles"])
|
|
|
100 |
|
101 |
with tab1:
|
102 |
+
st.header("Kaamera jäädvustamine / Camera Capture")
|
103 |
+
st.write("Tee pilt liblikast tuvastamiseks / Take a photo of a butterfly for identification.")
|
104 |
+
camera_photo = st.camera_input("Pildista liblikat / Capture a butterfly")
|
|
|
|
|
105 |
if camera_photo is not None:
|
106 |
try:
|
107 |
image = Image.open(camera_photo).convert("RGB")
|
|
|
108 |
col1, col2 = st.columns(2)
|
|
|
109 |
with col1:
|
110 |
+
st.image(image, caption="Jäädvustatud pilt / Captured Image", use_column_width=True)
|
|
|
111 |
with col2:
|
112 |
+
with st.spinner("Pildi analüüsimine... / Analyzing image..."):
|
113 |
predicted_class, confidence = predict_butterfly(image)
|
|
|
114 |
if predicted_class and confidence >= 0.50:
|
115 |
+
st.success(f"**Liblikas / Butterfly: {predicted_class}**")
|
116 |
+
if predicted_class in butterfly_info:
|
117 |
+
st.markdown("**Liigi kirjeldus / About this species:**")
|
118 |
+
st.write(butterfly_info[predicted_class]["description"])
|
119 |
else:
|
120 |
+
st.warning("⚠️ Ma ei tea, mis liblikas see on / I don't know what butterfly this is")
|
121 |
+
st.markdown("**Näpunäited paremate tulemuste saavutamiseks / Tips for better results:**")
|
122 |
+
st.markdown("- Kasutage paremat valgustust / Use better lighting")
|
123 |
+
st.markdown("- Veenduge, et liblikas oleks selgelt nähtav / Ensure the butterfly is clearly visible")
|
124 |
+
st.markdown("- Vältige uduseid või tumedaid pilte / Avoid blurry or dark images")
|
|
|
|
|
|
|
|
|
|
|
125 |
except Exception as e:
|
126 |
st.error(f"Error processing image: {str(e)}")
|
127 |
|
128 |
with tab2:
|
129 |
+
st.header("Laadi üles pilt / Upload Image")
|
130 |
+
st.write("Laadige üles liblika selge foto tuvastamiseks / Upload a clear photo of a butterfly for identification.")
|
131 |
+
uploaded_file = st.file_uploader("Vali pilt... / Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
if uploaded_file is not None:
|
133 |
try:
|
134 |
image_bytes = uploaded_file.read()
|
135 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
|
|
136 |
col1, col2 = st.columns(2)
|
|
|
137 |
with col1:
|
138 |
+
st.image(image, caption="Üleslaetud pilt / Uploaded Image", use_column_width=True)
|
|
|
139 |
with col2:
|
140 |
+
with st.spinner("Pildi analüüsimine... / Analyzing image..."):
|
141 |
predicted_class, confidence = predict_butterfly(image)
|
142 |
+
if predicted_class and confidence >= 0.50:
|
143 |
+
st.success(f"**Liblikas / Butterfly: {predicted_class}**")
|
144 |
+
if predicted_class in butterfly_info:
|
145 |
+
st.markdown("**Liigi kirjeldus / About this species:**")
|
146 |
+
st.write(butterfly_info[predicted_class]["description"])
|
147 |
+
else:
|
148 |
+
st.warning("⚠️ Ma ei tea, mis liblikas see on / I don't know what butterfly this is")
|
149 |
+
st.markdown("**Näpunäited paremate tulemuste saavutamiseks / Tips for better results:**")
|
150 |
+
st.markdown("- Kasutage paremat valgustust / Use better lighting")
|
151 |
+
st.markdown("- Veenduge, et liblikas oleks selgelt nähtav / Ensure the butterfly is clearly visible")
|
152 |
+
st.markdown("- Vältige uduseid või tumedaid pilte / Avoid blurry or dark images")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
except Exception as e:
|
154 |
st.error(f"Error processing image: {str(e)}")
|
155 |
|
156 |
+
# Footer
|
157 |
st.markdown("---")
|
158 |
+
st.markdown("### Kuidas kasutada / How to use:")
|
159 |
+
st.markdown("1. **Kaamera jäädvustamine / Camera Capture**: Tehke foto oma seadme kaameraga / Take a photo using your device camera")
|
160 |
+
st.markdown("2. **Laadi pilt üles / Upload Image**: Vali oma seadmest liblika foto / Choose a butterfly photo from your device")
|
161 |
+
st.markdown("3. **Parimad tulemused / Best Results**: Kasutage selgeid ja hästi valgustatud fotosid, kus liblikas on selgelt nähtav / Use clear, well-lit photos with the butterfly clearly visible")
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|