Spaces:
Runtime error
Runtime error
File size: 16,733 Bytes
9de012e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import torch
import einops
import numpy as np
import torch.nn.functional as F
from torch import Tensor, nn
from typing import Optional
from leo.utils import get_activation_fn, layer_repeat, calc_pairwise_locs
def disabled_train(self, mode=True):
"""
Overwrite model.train with this function to make sure train/eval mode does not change anymore
"""
return self
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, batch_first=True, dropout=0.1, activation="relu", prenorm=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(
d_model, nhead, dropout=dropout, batch_first=batch_first
)
# Implementation of Feedforward modules
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = get_activation_fn(activation)
self.prenorm = prenorm
def forward(
self, tgt, tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
):
tgt2 = tgt
if self.prenorm:
tgt2 = self.norm1(tgt2)
tgt2, self_attn_matrices = self.self_attn(
query=tgt2, key=tgt2, value=tgt2, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask
)
tgt = tgt + self.dropout1(tgt2)
if not self.prenorm:
tgt = self.norm1(tgt)
if self.prenorm:
tgt = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout2(tgt2)
if not self.prenorm:
tgt = self.norm2(tgt)
return tgt, self_attn_matrices
class MultiHeadAttentionSpatial(nn.Module):
def __init__(
self, d_model, n_head, dropout=0.1, spatial_multihead=True, spatial_dim=5,
spatial_attn_fusion='mul',
):
super().__init__()
assert d_model % n_head == 0, 'd_model: %d, n_head: %d' % (d_model, n_head)
self.n_head = n_head
self.d_model = d_model
self.d_per_head = d_model // n_head
self.spatial_multihead = spatial_multihead
self.spatial_dim = spatial_dim
self.spatial_attn_fusion = spatial_attn_fusion
self.w_qs = nn.Linear(d_model, d_model)
self.w_ks = nn.Linear(d_model, d_model)
self.w_vs = nn.Linear(d_model, d_model)
self.fc = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(p=dropout)
self.layer_norm = nn.LayerNorm(d_model)
self.spatial_n_head = n_head if spatial_multihead else 1
if self.spatial_attn_fusion in ['mul', 'bias', 'add']:
self.pairwise_loc_fc = nn.Linear(spatial_dim, self.spatial_n_head)
elif self.spatial_attn_fusion == 'ctx':
self.pairwise_loc_fc = nn.Linear(spatial_dim, d_model)
elif self.spatial_attn_fusion == 'cond':
self.lang_cond_fc = nn.Linear(d_model, self.spatial_n_head * (spatial_dim + 1))
else:
raise NotImplementedError('unsupported spatial_attn_fusion %s' % (self.spatial_attn_fusion))
def forward(self, q, k, v, pairwise_locs, key_padding_mask=None, txt_embeds=None):
residual = q
q = einops.rearrange(self.w_qs(q), 'b l (head k) -> head b l k', head=self.n_head)
k = einops.rearrange(self.w_ks(k), 'b t (head k) -> head b t k', head=self.n_head)
v = einops.rearrange(self.w_vs(v), 'b t (head v) -> head b t v', head=self.n_head)
attn = torch.einsum('hblk,hbtk->hblt', q, k) / np.sqrt(q.shape[-1])
if self.spatial_attn_fusion in ['mul', 'bias', 'add']:
loc_attn = self.pairwise_loc_fc(pairwise_locs)
loc_attn = einops.rearrange(loc_attn, 'b l t h -> h b l t')
if self.spatial_attn_fusion == 'mul':
loc_attn = F.relu(loc_attn)
if not self.spatial_multihead:
loc_attn = einops.repeat(loc_attn, 'h b l t -> (h nh) b l t', nh=self.n_head)
elif self.spatial_attn_fusion == 'ctx':
loc_attn = self.pairwise_loc_fc(pairwise_locs)
loc_attn = einops.rearrange(loc_attn, 'b l t (h k) -> h b l t k', h=self.n_head)
loc_attn = torch.einsum('hblk,hbltk->hblt', q, loc_attn) / np.sqrt(q.shape[-1])
elif self.spatial_attn_fusion == 'cond':
spatial_weights = self.lang_cond_fc(residual)
spatial_weights = einops.rearrange(spatial_weights, 'b l (h d) -> h b l d', h=self.spatial_n_head,
d=self.spatial_dim + 1)
if self.spatial_n_head == 1:
spatial_weights = einops.repeat(spatial_weights, '1 b l d -> h b l d', h=self.n_head)
spatial_bias = spatial_weights[..., :1]
spatial_weights = spatial_weights[..., 1:]
loc_attn = torch.einsum('hbld,bltd->hblt', spatial_weights, pairwise_locs) + spatial_bias
loc_attn = torch.sigmoid(loc_attn)
if key_padding_mask is not None:
mask = einops.repeat(key_padding_mask, 'b t -> h b l t', h=self.n_head, l=q.size(2))
attn = attn.masked_fill(mask, -np.inf)
if self.spatial_attn_fusion in ['mul', 'cond']:
loc_attn = loc_attn.masked_fill(mask, 0)
else:
loc_attn = loc_attn.masked_fill(mask, -np.inf)
if self.spatial_attn_fusion == 'add':
fused_attn = (torch.softmax(attn, 3) + torch.softmax(loc_attn, 3)) / 2
else:
if self.spatial_attn_fusion in ['mul', 'cond']:
fused_attn = torch.log(torch.clamp(loc_attn, min=1e-6)) + attn
else:
fused_attn = loc_attn + attn
fused_attn = torch.softmax(fused_attn, 3)
assert torch.sum(torch.isnan(fused_attn) == 0), print(fused_attn)
output = torch.einsum('hblt,hbtv->hblv', fused_attn, v)
output = einops.rearrange(output, 'head b l v -> b l (head v)')
output = self.dropout(self.fc(output))
output = self.layer_norm(output + residual)
return output, fused_attn
class TransformerSpatialEncoderLayer(TransformerEncoderLayer):
def __init__(
self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
spatial_multihead=True, spatial_dim=5, spatial_attn_fusion='mul'
):
super().__init__(
d_model, nhead, dim_feedforward=dim_feedforward, dropout=dropout, activation=activation
)
del self.self_attn
self.self_attn = MultiHeadAttentionSpatial(
d_model, nhead, dropout=dropout,
spatial_multihead=spatial_multihead,
spatial_dim=spatial_dim,
spatial_attn_fusion=spatial_attn_fusion,
)
def forward(
self, tgt, tgt_pairwise_locs,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
):
tgt2 = tgt
tgt2, self_attn_matrices = self.self_attn(
tgt2, tgt2, tgt2, tgt_pairwise_locs,
key_padding_mask=tgt_key_padding_mask
)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
return tgt, self_attn_matrices
def _init_weights_bert(module, std=0.02):
"""
Huggingface transformer weight initialization,
most commonly for bert initialization
"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def generate_fourier_features(pos, num_bands=10, max_freq=15, concat_pos=True, sine_only=False):
# Input: B, N, C
# Output: B, N, C'
batch_size = pos.shape[0]
device = pos.device
min_freq = 1.0
# Nyquist frequency at the target resolution:
freq_bands = torch.linspace(start=min_freq, end=max_freq, steps=num_bands, device=device)
# Get frequency bands for each spatial dimension.
# Output is size [n, d * num_bands]
per_pos_features = pos.unsqueeze(-1).repeat(1, 1, 1, num_bands) * freq_bands
per_pos_features = torch.reshape(
per_pos_features, [batch_size, -1, np.prod(per_pos_features.shape[2:])])
if sine_only:
# Output is size [n, d * num_bands]
per_pos_features = torch.sin(np.pi * (per_pos_features))
else:
# Output is size [n, 2 * d * num_bands]
per_pos_features = torch.cat(
[torch.sin(np.pi * per_pos_features), torch.cos(np.pi * per_pos_features)], dim=-1
)
# Concatenate the raw input positions.
if concat_pos:
# Adds d bands to the encoding.
per_pos_features = torch.cat(
[pos, per_pos_features.expand(batch_size, -1, -1)], dim=-1)
return per_pos_features
class OSE3D(nn.Module):
# Open-vocabulary, Spatial-attention, Embodied-token, 3D-agent
def __init__(self, use_spatial_attn=True, use_embodied_token=False, hidden_dim=256, fourier_size=84, spatial_encoder={
"num_attention_heads": 8,
"dim_feedforward": 2048,
"dropout": 0.1,
"activation": "gelu",
"spatial_dim": 5,
"spatial_multihead": True,
"spatial_attn_fusion": "cond",
"num_layers": 3,
"pairwise_rel_type": "center",
"spatial_dist_norm": True,
"obj_loc_encoding": "same_all",
"dim_loc": 6,
}):
super().__init__()
self.use_spatial_attn = use_spatial_attn # spatial attention
self.use_embodied_token = use_embodied_token # embodied token
# pcd backbone
# self.obj_encoder = PointcloudBackbone(backbone)
self.obj_proj = nn.Linear(768, hidden_dim)
# embodied token
if self.use_embodied_token:
self.anchor_feat = nn.Parameter(torch.zeros(1, 1, hidden_dim))
self.anchor_size = nn.Parameter(torch.ones(1, 1, 3))
self.orient_encoder = nn.Linear(fourier_size, hidden_dim)
self.obj_type_embed = nn.Embedding(2, hidden_dim)
# spatial encoder
if self.use_spatial_attn:
spatial_encoder_layer = TransformerSpatialEncoderLayer(
d_model=hidden_dim,
nhead=spatial_encoder['num_attention_heads'],
dim_feedforward=spatial_encoder['dim_feedforward'],
dropout=spatial_encoder['dropout'],
activation=spatial_encoder['activation'],
spatial_dim=spatial_encoder['spatial_dim'],
spatial_multihead=spatial_encoder['spatial_multihead'],
spatial_attn_fusion=spatial_encoder['spatial_attn_fusion'],
)
else:
spatial_encoder_layer = TransformerEncoderLayer(
d_model=hidden_dim,
nhead=spatial_encoder['num_attention_heads'],
dim_feedforward=spatial_encoder['dim_feedforward'],
dropout=spatial_encoder['dropout'],
activation=spatial_encoder['activation'],
)
self.spatial_encoder = layer_repeat(
spatial_encoder_layer,
spatial_encoder['num_layers'],
)
self.pairwise_rel_type = spatial_encoder['pairwise_rel_type']
self.spatial_dist_norm = spatial_encoder['spatial_dist_norm']
self.spatial_dim = spatial_encoder['spatial_dim']
self.obj_loc_encoding = spatial_encoder['obj_loc_encoding']
# location encoding
if self.obj_loc_encoding in ['same_0', 'same_all']:
num_loc_layers = 1
elif self.obj_loc_encoding == 'diff_all':
num_loc_layers = spatial_encoder['num_layers']
loc_layer = nn.Sequential(
nn.Linear(spatial_encoder['dim_loc'], hidden_dim),
nn.LayerNorm(hidden_dim),
)
self.loc_layers = layer_repeat(loc_layer, num_loc_layers)
# only initialize spatial encoder and loc layers
self.spatial_encoder.apply(_init_weights_bert)
self.loc_layers.apply(_init_weights_bert)
if self.use_embodied_token:
nn.init.normal_(self.anchor_feat, std=0.02)
@property
def device(self):
return list(self.parameters())[0].device
def forward(self, data_dict):
"""
data_dict requires keys:
obj_fts: (B, N, P, 6), xyz + rgb
obj_masks: (B, N), 1 valid and 0 masked
obj_locs: (B, N, 6), xyz + whd
anchor_locs: (B, 3)
anchor_orientation: (B, C)
"""
# obj_feats = self.obj_encoder(data_dict['obj_fts'])
obj_feats = data_dict['obj_feats']
obj_feats = self.obj_proj(obj_feats)
obj_masks = ~data_dict['obj_masks'] # flipped due to different convention of TransformerEncoder
B, N = obj_feats.shape[:2]
device = obj_feats.device
obj_type_ids = torch.zeros((B, N), dtype=torch.long, device=device)
obj_type_embeds = self.obj_type_embed(obj_type_ids)
if self.use_embodied_token:
# anchor feature
anchor_orient = data_dict['anchor_orientation'].unsqueeze(1)
anchor_orient_feat = self.orient_encoder(generate_fourier_features(anchor_orient))
anchor_feat = self.anchor_feat + anchor_orient_feat
anchor_mask = torch.zeros((B, 1), dtype=bool, device=device)
# anchor loc (3) + size (3)
anchor_loc = torch.cat(
[data_dict['anchor_locs'].unsqueeze(1), self.anchor_size.expand(B, -1, -1).to(device)], dim=-1
)
# anchor type
anchor_type_id = torch.ones((B, 1), dtype=torch.long, device=device)
anchor_type_embed = self.obj_type_embed(anchor_type_id)
# fuse anchor and objs
all_obj_feats = torch.cat([anchor_feat, obj_feats], dim=1)
all_obj_masks = torch.cat((anchor_mask, obj_masks), dim=1)
all_obj_locs = torch.cat([anchor_loc, data_dict['obj_locs']], dim=1)
all_obj_type_embeds = torch.cat((anchor_type_embed, obj_type_embeds), dim=1)
else:
all_obj_feats = obj_feats
all_obj_masks = obj_masks
all_obj_locs = data_dict['obj_locs']
all_obj_type_embeds = obj_type_embeds
all_obj_feats = all_obj_feats + all_obj_type_embeds
# call spatial encoder
if self.use_spatial_attn:
pairwise_locs = calc_pairwise_locs(
all_obj_locs[:, :, :3],
all_obj_locs[:, :, 3:],
pairwise_rel_type=self.pairwise_rel_type,
spatial_dist_norm=self.spatial_dist_norm,
spatial_dim=self.spatial_dim,
)
for i, pc_layer in enumerate(self.spatial_encoder):
if self.obj_loc_encoding == 'diff_all':
query_pos = self.loc_layers[i](all_obj_locs)
else:
query_pos = self.loc_layers[0](all_obj_locs)
if not (self.obj_loc_encoding == 'same_0' and i > 0):
all_obj_feats = all_obj_feats + query_pos
if self.use_spatial_attn:
all_obj_feats, _ = pc_layer(
all_obj_feats, pairwise_locs,
tgt_key_padding_mask=all_obj_masks
)
else:
all_obj_feats, _ = pc_layer(
all_obj_feats,
tgt_key_padding_mask=all_obj_masks
)
data_dict['obj_tokens'] = all_obj_feats
data_dict['obj_masks'] = ~all_obj_masks
# ###feat_pth = os.path.join(ASSET_DIR, f'inputs/{scan_id}', f'{scan_id}_img_gt.pth')
# data_dict['obj_tokens'] = torch.load('assets/inputs/scene0350_00/obj_tokens.pth')
# data_dict['obj_masks'] = torch.load('assets/inputs/scene0350_00/obj_masks.pth')
return data_dict |