import numpy as np import onnxruntime as ort import gradio as gr from PIL import Image from torchvision.models import ResNet50_Weights weights = ResNet50_Weights.DEFAULT preprocess = weights.transforms() # Necessary input transformations ort_session = ort.InferenceSession("resnet50.onnx", providers=["CPUExecutionProvider"]) def preprocess_inputs(img: Image): img = preprocess(img) img_array = np.array(img).astype(np.float32) img_array = np.expand_dims(img_array, axis=0) return img_array def predict(img): img = preprocess_inputs(img) ort_inputs = {ort_session.get_inputs()[0].name: img} ort_outputs = ort_session.run(None, ort_inputs) #probs = np.exp(ort_outputs) / np.sum(np.exp(ort_outputs)) # softmax label_index = np.argmax(ort_outputs[0], axis=1).item() predicted_label = weights.meta["categories"][label_index] return predicted_label demo = gr.Interface(predict, gr.Image(type="pil", image_mode="RGB"), gr.Label(), title="ResNet-50 Using onnxruntime", description="Upload any image and see if resnet-50 can classify it! (1000 possible image classes)", article="Part of a tutorial on [how to deploy an ONNX mode to Hugging Face](https://liamgroen.nl/posts/day-6-deploying-model-to-huggingface-spaces-through-onnx/index.html)") demo.launch()