File size: 1,394 Bytes
d61cd07
e673826
d2894f7
e673826
d2894f7
 
 
 
e673826
 
d2894f7
 
 
 
 
 
e673826
 
 
 
 
 
5d174b9
 
 
d2894f7
5d174b9
d2894f7
5d174b9
d2894f7
 
 
5d174b9
d2894f7
 
5d174b9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gradio as gr
import random
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from datasets import load_dataset

tokenizer = AutoTokenizer.from_pretrained("liamvbetts/bart-large-cnn-v4")
model = AutoModelForSeq2SeqLM.from_pretrained("liamvbetts/bart-large-cnn-v4")

dataset = load_dataset("cnn_dailymail", "3.0.0")

def summarize(article):
    inputs = tokenizer(article, return_tensors="pt").input_ids
    outputs = model.generate(inputs, max_new_tokens=128, do_sample=False)
    summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return summary

def get_random_article():
    random.seed()
    val_example = dataset["validation"].shuffle().select(range(1))
    val_article = val_example['article'][0][:512]
    return val_article

def update_article_input():
    return get_random_article()

# Create Gradio interface
input_text = gr.Textbox(lines=10, label="Input Text", value="")
output_text = gr.Textbox(label="Summary")
load_article_button = gr.Button("Load Random Article")

gr.Interface(
    fn=summarize,
    inputs=[input_text, load_article_button],
    outputs=output_text,
    title="News Summary App",
    description="Enter a news text and get its summary, or load a random article from the validation set.",
    live=True
).add_event("click", update_article_input, inputs=None, outputs=input_text, elem_id=load_article_button.elem_id).launch()