liamvbetts's picture
first version
d2894f7
raw
history blame
787 Bytes
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("liamvbetts/bart-large-cnn-v4")
model = AutoModelForSeq2SeqLM.from_pretrained("liamvbetts/bart-large-cnn-v4")
def summarize(article):
inputs = tokenizer(article, return_tensors="pt").input_ids
outputs = model.generate(inputs, max_new_tokens=128, do_sample=False)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary
# Create Gradio interface
input_text = gr.Textbox(lines=10, label="Input Text")
output_text = gr.Textbox(label="Summary")
gr.Interface(
fn=summarize,
inputs=input_text,
outputs=output_text,
title="News Summary App",
description="Enter a news text and get its summary."
).launch()