File size: 5,494 Bytes
05ca42f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from io import BytesIO
import os
from pathlib import Path
import sys

import gradio as gr
import pandas as pd
from rdkit import Chem
from rdkit.Chem import RDConfig, Descriptors, Lipinski, Crippen

sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
import sascorer


root = Path.cwd()
task_list = [f.stem for f in root.parent.joinpath("configs/task").iterdir() if f.suffix == ".yaml"]
preset_list = [f.stem for f in root.parent.joinpath("configs/preset").iterdir() if f.suffix == ".yaml"]
predictor_list = [f.stem for f in root.parent.joinpath("configs/model/predictor").iterdir() if f.suffix == ".yaml"]
drug_encoder_list = [f.stem for f in root.parent.joinpath("configs/model/predictor/drug_encoder").iterdir() if
                     f.suffix == ".yaml"]
drug_featurizer_list = [f.stem for f in root.parent.joinpath("configs/data/drug_featurizer").iterdir() if
                        f.suffix == ".yaml"]
protein_encoder_list = [f.stem for f in root.parent.joinpath("configs/model/predictor/protein_encoder").iterdir() if
                        f.suffix == ".yaml"]
protein_featurizer_list = [f.stem for f in root.parent.joinpath("configs/data/protein_featurizer").iterdir() if
                           f.suffix == ".yaml"]
classifier_list = [f.stem for f in root.parent.joinpath("configs/model/predictor/decoder").iterdir() if
                   f.suffix == ".yaml"]


def load_csv(file):
    return pd.read_csv(BytesIO(file))


def drug_target_predict(
        predict_data,
        task,
        preset,
):
    try:
        return load_csv(predict_data)
    except Exception as e:
        raise gr.Error(str(e))


# Define a function that takes a CSV output and a list of analytical utility functions as inputs
def analyze_csv(df_predict, score_list, filter_list):
    df_report = df_predict.copy()
    try:
        # Loop through the list of functions and apply them to the dataframe
        for filter_name in filter_list:
            gr.Info(f'Applying {filter_name}...')

        for score_name in score_list:
            gr.Info(f'Calculating {score_name}...')
            # Apply the function to the dataframe and assign the result to a new column
            df_report[score_name] = df_report.apply(score_map[score_name], axis=1)
        # Return the dataframe as a table
        return df_report
    except Exception as e:
        raise gr.Error(str(e))


def sa_score(row):
    return sascorer.calculateScore(Chem.MolFromSmiles(row['X1']))


def mw(row):
    return Chem.Descriptors.MolWt(Chem.MolFromSmiles(row['X1']))


def hbd(row):
    return Lipinski.NumHDonors(Chem.MolFromSmiles(row['X1']))


def hba(row):
    return Lipinski.NumHAcceptors(Chem.MolFromSmiles(row['X1']))


def logp(row):
    return Crippen.MolLogP(Chem.MolFromSmiles(row['X1']))


score_map = {
    'SAscore': sa_score,
    'RAscore': None,  # https://github.com/reymond-group/RAscore
    'SCScore': None,  # https://pubs.acs.org/doi/10.1021/acs.jcim.7b00622
    'LogP': logp,  # https://www.rdkit.org/docs/source/rdkit.Chem.Crippen.html
    'MW': mw,  # https://www.rdkit.org/docs/source/rdkit.Chem.Descriptors.html
    'HBD': hbd,  # https://www.rdkit.org/docs/source/rdkit.Chem.Lipinski.html
    'HBA': hba,  # https://www.rdkit.org/docs/source/rdkit.Chem.Lipinski.html
    'TopoPSA': None,  # http://mordred-descriptor.github.io/documentation/master/api/mordred.TopoPSA.html
}

filter_map = {
    'PAINS filter': None,
    "Lipinski's rule of five": None,  # https://gist.github.com/strets123/fdc4db6d450b66345f46
    'ADMET filter': None,
    'TCL filter': None
}

# cbg = gr.CheckboxGroup(choices=list(df.columns), label="Select columns")
#
# df_report = gr.Dataframe(type="pandas", interactive=False)

df_predict = gr.Dataframe(type="pandas", interactive=False, height=500, visible=False)

with gr.Blocks(theme=gr.themes.Soft(spacing_size="sm", text_size='lg'), title='DeepScreen') as demo:
    with gr.Tab(label='Inference') as inference:
        gr.Markdown('''
        # <center>DeepScreen Inference Service</center>
    
        DeepScreen for predicting drug-target interaction. 
        ''')
        # Upload a prediction dataset, choose a prediction task
        # (`binary` for interaction, and `regression` for affinity), and select a model preset to submit a job.
        with gr.Row():
            predict_data = gr.File(file_count="single", label='Prediction dataset file', type='binary')

        # predict_data.change(fn=load_csv, inputs=predict_data, outputs=df_predict)
        with gr.Row():
            task = gr.Dropdown(task_list, label='Task')
            preset = gr.Dropdown(preset_list + [None], label='Preset')

        with gr.Row():
            gr.ClearButton()
            predict_btn = gr.Button("Predict", variant="primary")

        predict_btn.click(fn=drug_target_predict, inputs=[predict_data, task, preset], outputs=df_predict)

    with gr.Tab(label='Report') as report:
        gr.Markdown('''
            # <center>DeepScreen Virtual Screening Report</center>
        
            Analytic report for virtual screening predictions. 
            ''')
        with gr.Row():
            score_menu = gr.CheckboxGroup(score_map.keys(), label='Scores')
            filter_menu = gr.CheckboxGroup(filter_map.keys(), label='Filters')

        df_report = gr.Dataframe(type="pandas", interactive=False, visible=True, height=500)

        with gr.Row():
            gr.ClearButton()
            analyze_btn = gr.Button("Analyze", variant="primary")