File size: 1,957 Bytes
6ae852e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import logging

from lightning.pytorch.utilities import rank_zero_only
from lightning.pytorch.utilities.model_summary import ModelSummary


def get_logger(name=__name__) -> logging.Logger:
    """Initializes multi-GPU-friendly python command line logger."""
    logger = logging.getLogger(name)

    # this ensures all logging levels get marked with the rank zero decorator
    # otherwise logs would get multiplied for each GPU process in multi-GPU setup
    logging_levels = ("debug", "info", "warning", "error", "exception", "fatal", "critical")
    for level in logging_levels:
        setattr(logger, level, rank_zero_only(getattr(logger, level)))

    return logger


log = get_logger(__name__)


@rank_zero_only
def log_hyperparameters(object_dict: dict) -> None:
    """Controls which config parts are saved by lightning loggers.

    Additionally, saves:
    - Number of model parameters
    """

    hparams = {}

    cfg = object_dict["cfg"]
    model = object_dict["model"]
    trainer = object_dict["trainer"]

    if not trainer.logger:
        log.warning("Logger not found! Skipping hyperparameter logging.")
        return

    hparams["model"] = cfg["model"]

    # save number of model parameters
    model_summary = ModelSummary(model)
    hparams["model/params/total"] = model_summary.total_parameters
    hparams["model/params/trainable"] = model_summary.trainable_parameters
    hparams["model/params/non_trainable"] = model_summary.total_parameters - model_summary.trainable_parameters

    hparams["data"] = cfg["data"]
    hparams["trainer"] = cfg["trainer"]

    hparams["callbacks"] = cfg.get("callbacks")
    hparams["extras"] = cfg.get("extras")

    hparams["job_name"] = cfg.get("job_name")
    hparams["tags"] = cfg.get("tags")
    hparams["ckpt_path"] = cfg.get("ckpt_path")
    hparams["seed"] = cfg.get("seed")

    # send hparams to all loggers
    for logger in trainer.loggers:
        logger.log_hyperparams(hparams)