libokj's picture
Upload 358 files
05ca42f
raw
history blame
14.9 kB
import math
from collections import defaultdict
from typing import Literal
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from rdkit import Chem
from scipy.sparse import coo_matrix
from torch_geometric.data import Data
from torch_geometric.nn.pool.topk_pool import TopKPooling
from torch_geometric.nn.glob import global_mean_pool as gap, global_max_pool as gmp
from torch_geometric.utils import add_self_loops, remove_self_loops
from torch_geometric.nn.conv.message_passing import MessagePassing
class CoaDTIPro(nn.Module):
def __init__(self,
esm_model_and_alphabet, n_fingerprint, dim, n_word, layer_output, layer_coa, nhead=8, dropout=0.1,
co_attention: Literal['stack', 'encoder', 'inter'] = 'inter', gcn_pooling=False, ):
super().__init__()
self.co_attention = co_attention
self.layer_output = layer_output
self.layer_coa = layer_coa
self.embed_word = nn.Embedding(n_word, dim)
self.gnn = GNN(n_fingerprint, gcn_pooling)
self.esm_model, self.alphabet = esm_model_and_alphabet
self.batch_converter = self.alphabet.get_batch_converter()
self.W_attention = nn.Linear(dim, dim)
self.W_out = nn.Sequential(
nn.Linear(2 * dim, dim),
nn.Linear(dim, 128),
nn.Linear(128, 64)
)
self.coa_layers = CoAttention(dim, nhead, dropout, layer_coa, co_attention)
self.lin = nn.Linear(768, 512) # bert1024 esm768
self.W_interaction = nn.Linear(64, 2)
def attention_cnn(self, x, xs, layer):
"""The attention mechanism is applied to the last layer of CNN."""
xs = torch.unsqueeze(torch.unsqueeze(xs, 0), 0)
for i in range(layer):
xs = torch.relu(self.W_cnn[i](xs))
xs = torch.squeeze(torch.squeeze(xs, 0), 0)
h = torch.relu(self.W_attention(x))
hs = torch.relu(self.W_attention(xs))
weights = torch.tanh(F.linear(h, hs))
ys = torch.t(weights) * hs
return torch.unsqueeze(torch.mean(ys, 0), 0)
def forward(self, inputs, proteins):
"""Compound vector with GNN."""
compound_vector = self.gnn(inputs)
compound_vector = torch.unsqueeze(compound_vector, 0) # sequence-like GNN ouput
_, _, proteins = self.batch_converter([(None, protein) for protein in proteins])
with torch.no_grad():
results = self.esm_model(proteins.to(compound_vector.device), repr_layers=[6])
token_representations = results["representations"][6]
protein_vector = token_representations[:, 1:, :]
protein_vector = self.lin(torch.squeeze(protein_vector, 1))
protein_vector, compound_vector = self.coa_layers(protein_vector, compound_vector)
protein_vector = protein_vector.mean(dim=1)
compound_vector = compound_vector.mean(dim=1)
"""Concatenate the above two vectors and output the interaction."""
cat_vector = torch.cat((compound_vector, protein_vector), 1)
cat_vector = torch.tanh(self.W_out(cat_vector))
interaction = self.W_interaction(cat_vector)
return interaction
class CoAttention(nn.Module):
def __init__(self, dim, nhead, dropout, layer_coa, co_attention):
super().__init__()
self.co_attention = co_attention
if self.co_attention == 'encoder':
self.coa_layers = EncoderCrossAtt(dim, nhead, dropout, layer_coa)
elif self.co_attention == 'stack':
self.coa_layers = nn.ModuleList([StackCrossAtt(dim, nhead, dropout) for _ in range(layer_coa)])
elif self.co_attention == 'inter':
self.coa_layers = nn.ModuleList([InterCrossAtt(dim, nhead, dropout) for _ in range(layer_coa)])
def forward(self, protein_vector, compound_vector):
# x and y are the input tensors for the two modalities
# edge_index_x and edge_index_y are the edge indices for the graph data
if self.co_attention == 'encoder':
return self.coa_layers(protein_vector, compound_vector)
else:
# loop over the sequential layers and pass the arguments
for layer in self.coa_layers:
protein_vector, compound_vector = layer(protein_vector, compound_vector)
return protein_vector, compound_vector
class EncoderCrossAtt(nn.Module):
def __init__(self, dim, nhead, dropout, layers):
super().__init__()
# self.encoder_layers = nn.ModuleList([SEA(dim, dropout) for _ in range(layers)])
self.encoder_layers = nn.ModuleList([SA(dim, nhead, dropout) for _ in range(layers)])
self.decoder_sa = nn.ModuleList([SA(dim, nhead, dropout) for _ in range(layers)])
self.decoder_coa = nn.ModuleList([DPA(dim, nhead, dropout) for _ in range(layers)])
self.layer_coa = layers
def forward(self, protein_vector, compound_vector):
for i in range(self.layer_coa):
compound_vector = self.encoder_layers[i](compound_vector, None) # self-attention
for i in range(self.layer_coa):
protein_vector = self.decoder_sa[i](protein_vector, None)
protein_vector = self.decoder_coa[i](protein_vector, compound_vector, None)# co-attention
return protein_vector, compound_vector
class InterCrossAtt(nn.Module):
def __init__(self, dim, nhead, dropout):
super().__init__()
self.sca = SA(dim, nhead, dropout)
self.spa = SA(dim, nhead, dropout)
self.coa_pc = DPA(dim, nhead, dropout)
self.coa_cp = DPA(dim, nhead, dropout)
def forward(self, protein_vector, compound_vector):
compound_vector = self.sca(compound_vector, None) # self-attention
protein_vector = self.spa(protein_vector, None) # self-attention
compound_covector = self.coa_pc(compound_vector, protein_vector, None) # co-attention
protein_covector = self.coa_cp(protein_vector, compound_vector, None) # co-attention
return protein_covector, compound_covector
class StackCrossAtt(nn.Module):
def __init__(self, dim, nhead, dropout):
super().__init__()
self.sca = SA(dim, nhead, dropout)
self.spa = SA(dim, nhead, dropout)
self.coa_cp = DPA(dim, nhead, dropout)
def forward(self, protein_vector, compound_vector):
compound_vector = self.sca(compound_vector, None) # self-attention
protein_vector = self.spa(protein_vector, None) # self-attention
protein_covector = self.coa_cp(protein_vector, compound_vector, None) # co-attention
return protein_covector, compound_vector
class MHAtt(nn.Module):
def __init__(self, hid_dim, n_heads, dropout):
super().__init__()
self.linear_v = nn.Linear(hid_dim, hid_dim)
self.linear_k = nn.Linear(hid_dim, hid_dim)
self.linear_q = nn.Linear(hid_dim, hid_dim)
self.linear_merge = nn.Linear(hid_dim, hid_dim)
self.hid_dim = hid_dim
self.dropout = dropout
self.nhead = n_heads
self.dropout = nn.Dropout(dropout)
self.hidden_size_head = int(self.hid_dim / self.nhead)
def forward(self, v, k, q, mask):
n_batches = q.size(0)
v = self.linear_v(v).view(n_batches, -1, self.nhead, self.hidden_size_head).transpose(1, 2)
k = self.linear_k(k).view(n_batches, -1, self.nhead, self.hidden_size_head).transpose(1, 2)
q = self.linear_q(q).view(n_batches, -1, self.nhead, self.hidden_size_head).transpose(1, 2)
atted = self.att(v, k, q, mask)
atted = atted.transpose(1, 2).contiguous().view(n_batches, -1, self.hid_dim)
atted = self.linear_merge(atted)
return atted
def att(self, value, key, query, mask):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask, -1e9)
att_map = F.softmax(scores, dim=-1)
att_map = self.dropout(att_map)
return torch.matmul(att_map, value)
class DPA(nn.Module):
def __init__(self, hid_dim, n_heads, dropout):
super().__init__()
self.mhatt1 = MHAtt(hid_dim, n_heads, dropout)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(hid_dim)
def forward(self, x, y, y_mask=None):
x = self.norm1(x + self.dropout1(self.mhatt1(y, y, x, y_mask)))
return x
class SA(nn.Module):
def __init__(self, hid_dim, n_heads, dropout):
super().__init__()
self.mhatt1 = MHAtt(hid_dim, n_heads, dropout)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(hid_dim)
def forward(self, x, mask=None):
x = self.norm1(x + self.dropout1(self.mhatt1(x, x, x, mask)))
return x
class SAGEConv(MessagePassing):
def __init__(self, in_channels, out_channels):
super().__init__(aggr='max') # "Max" aggregation.
self.lin = torch.nn.Linear(in_channels, out_channels)
self.act = torch.nn.ReLU()
self.update_lin = torch.nn.Linear(in_channels + out_channels, in_channels, bias=False)
self.update_act = torch.nn.ReLU()
def forward(self, x, edge_index):
# x has shape [N, in_channels]
# edge_index has shape [2, E]
edge_index, _ = remove_self_loops(edge_index)
edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))
return self.propagate(edge_index, size=(x.size(0), x.size(0)), x=x)
def message(self, x_j):
# x_j has shape [E, in_channels]
x_j = self.lin(x_j)
x_j = self.act(x_j)
return x_j
def update(self, aggr_out, x):
# aggr_out has shape [N, out_channels]
new_embedding = torch.cat([aggr_out, x], dim=1)
new_embedding = self.update_lin(new_embedding)
new_embedding = self.update_act(new_embedding)
return new_embedding
class GNN(nn.Module):
def __init__(self, n_fingerprint, pooling, embed_dim=128):
super().__init__()
self.pooling = pooling
self.embed_fingerprint = nn.Embedding(num_embeddings=n_fingerprint, embedding_dim=embed_dim)
self.conv1 = SAGEConv(embed_dim, 128)
self.pool1 = TopKPooling(128, ratio=0.8)
self.conv2 = SAGEConv(128, 128)
self.pool2 = TopKPooling(128, ratio=0.8)
self.conv3 = SAGEConv(128, 128)
self.pool3 = TopKPooling(128, ratio=0.8)
self.linp1 = torch.nn.Linear(256, 128)
self.linp2 = torch.nn.Linear(128, 512)
self.lin = torch.nn.Linear(128, 512)
self.bn1 = torch.nn.BatchNorm1d(128)
self.bn2 = torch.nn.BatchNorm1d(64)
self.act1 = torch.nn.ReLU()
self.act2 = torch.nn.ReLU()
def forward(self, data):
# x, edge_index, batch = data.x, data.edge_index, data.batch
x, edge_index, batch = data.x, data.edge_index, data.batch
x = self.embed_fingerprint(x)
x = x.squeeze(1)
x = F.relu(self.conv1(x, edge_index))
if self.pooling:
x, edge_index, _, batch, _, _ = self.pool1(x, edge_index, None, batch)
x1 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
x = F.relu(self.conv2(x, edge_index))
x, edge_index, _, batch, _, _ = self.pool2(x, edge_index, None, batch)
x2 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
x, edge_index, _, batch, _, _ = self.pool3(x, edge_index, None, batch)
x3 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
x = x1 + x2 + x3
x = self.linp1(x)
x = self.act1(x)
x = self.linp2(x)
else:
x = F.relu(self.conv2(x, edge_index))
x = self.lin(x)
return x
atom_dict = defaultdict(lambda: len(atom_dict)) # 51 bindingdb: 26
bond_dict = defaultdict(lambda: len(bond_dict)) # 4 bindingdb: 4
fingerprint_dict = defaultdict(lambda: len(fingerprint_dict)) # 6341 bindingdb: 20366
edge_dict = defaultdict(lambda: len(edge_dict)) # 17536 bindingdb: 77916
word_dict = defaultdict(lambda: len(word_dict)) # 22 bindingdb: 21
def drug_featurizer(smiles, radius=2):
mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
atoms = create_atoms(mol)
i_jbond_dict = create_ijbonddict(mol)
fingerprints = extract_fingerprints(atoms, i_jbond_dict, radius)
adjacency = coo_matrix(Chem.GetAdjacencyMatrix(mol))
adjacency = coo_matrix(adjacency)
edge_index = np.array([adjacency.row, adjacency.col])
return Data(x=torch.LongTensor(fingerprints).unsqueeze(1), edge_index=torch.LongTensor(edge_index))
def create_atoms(mol):
"""Create a list of atom (e.g., hydrogen and oxygen) IDs
considering the aromaticity."""
# GetSymbol: obtain the symbol of the atom
atoms = [a.GetSymbol() for a in mol.GetAtoms()]
for a in mol.GetAromaticAtoms():
i = a.GetIdx()
atoms[i] = (atoms[i], 'aromatic')
# turn it into index
atoms = [atom_dict[a] for a in atoms]
return np.array(atoms)
def create_ijbonddict(mol):
"""Create a dictionary, which each key is a node ID
and each value is the tuples of its neighboring node
and bond (e.g., single and double) IDs."""
i_jbond_dict = defaultdict(lambda: [])
for b in mol.GetBonds():
i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx()
bond = bond_dict[str(b.GetBondType())]
i_jbond_dict[i].append((j, bond))
i_jbond_dict[j].append((i, bond))
return i_jbond_dict
def extract_fingerprints(atoms, i_jbond_dict, radius=2):
"""Extract the r-radius subgraphs (i.e., fingerprints)
from a molecular graph using Weisfeiler-Lehman algorithm."""
fingerprints = None
if (len(atoms) == 1) or (radius == 0):
fingerprints = [fingerprint_dict[a] for a in atoms]
else:
nodes = atoms
i_jedge_dict = i_jbond_dict
for _ in range(radius):
"""Update each node ID considering its neighboring nodes and edges
(i.e., r-radius subgraphs or fingerprints)."""
fingerprints = []
for i, j_edge in i_jedge_dict.items():
neighbors = [(nodes[j], edge) for j, edge in j_edge]
fingerprint = (nodes[i], tuple(sorted(neighbors)))
fingerprints.append(fingerprint_dict[fingerprint])
nodes = fingerprints
"""Also update each edge ID considering two nodes
on its both sides."""
_i_jedge_dict = defaultdict(lambda: [])
for i, j_edge in i_jedge_dict.items():
for j, edge in j_edge:
both_side = tuple(sorted((nodes[i], nodes[j])))
edge = edge_dict[(both_side, edge)]
_i_jedge_dict[i].append((j, edge))
i_jedge_dict = _i_jedge_dict
return np.array(fingerprints)