libokj's picture
Upload 358 files
05ca42f
raw
history blame
4.73 kB
from typing import List, Tuple
import hydra
from lightning import LightningDataModule, LightningModule, Trainer, Callback
from lightning.pytorch.loggers import Logger
from omegaconf import DictConfig
from deepscreen.utils.hydra import checkpoint_rerun_config
from deepscreen.utils import get_logger, job_wrapper, instantiate_callbacks, instantiate_loggers, log_hyperparameters
log = get_logger(__name__)
# def fix_dict_config(cfg: DictConfig):
# """fix all vars in the cfg config
# this is an in-place operation"""
# keys = list(cfg.keys())
# for k in keys:
# if type(cfg[k]) is DictConfig:
# fix_dict_config(cfg[k])
# else:
# setattr(cfg, k, getattr(cfg, k))
@job_wrapper(extra_utils=True)
def test(cfg: DictConfig) -> Tuple[dict, dict]:
"""Evaluates given checkpoint on a datamodule testset.
This method is wrapped in optional @job_wrapper decorator, that controls the behavior during
failure. Useful for multiruns, saving info about the crash, etc.
Args:
cfg (DictConfig): Configuration composed by Hydra.
Returns:
Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects.
"""
# fix_dict_config(cfg)
log.info(f"Instantiating datamodule <{cfg.data._target_}>")
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data)
log.info(f"Instantiating model <{cfg.model._target_}>")
model: LightningModule = hydra.utils.instantiate(cfg.model)
log.info("Instantiating callbacks.")
callbacks: List[Callback] = instantiate_callbacks(cfg.get("callbacks"))
log.info("Instantiating loggers.")
logger: List[Logger] = instantiate_loggers(cfg.get("logger"))
log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, logger=logger, callbacks=callbacks)
object_dict = {
"cfg": cfg,
"datamodule": datamodule,
"model": model,
"callbacks": callbacks,
"logger": logger,
"trainer": trainer,
}
if logger:
log.info("Logging hyperparameters.")
log_hyperparameters(object_dict)
log.info("Start testing.")
trainer.test(model=model, datamodule=datamodule, ckpt_path=cfg.ckpt_path)
metric_dict = trainer.callback_metrics
return metric_dict, object_dict
@hydra.main(version_base="1.3", config_path="../configs", config_name="test.yaml")
def main(cfg: DictConfig):
assert cfg.ckpt_path, "Checkpoint path (`ckpt_path`) must be specified for testing."
cfg = checkpoint_rerun_config(cfg)
# from hydra.core.hydra_config import HydraConfig
#
# hydra_cfg = HydraConfig.get()
# if hydra_cfg.output_subdir is not None:
# ckpt_cfg_path = Path(cfg.ckpt_path).parents[1] / hydra_cfg.output_subdir / 'config.yaml'
# ckpt_hydra_cfg_path = Path(cfg.ckpt_path).parents[1] / hydra_cfg.output_subdir / 'hydra.yaml'
# hydra_output = Path(hydra_cfg.runtime.output_dir) / hydra_cfg.output_subdir
#
# if ckpt_cfg_path.is_file():
# log.info(f"Found config file for the checkpoint at {str(ckpt_cfg_path)}; "
# f"merging config overrides with checkpoint config...")
# ckpt_cfg = OmegaConf.load(ckpt_cfg_path)
#
# if ckpt_hydra_cfg_path.is_file():
# ckpt_hydra_cfg = OmegaConf.load(ckpt_hydra_cfg_path)
# override_dirname = sanitize_path(ckpt_hydra_cfg.job.override_dirname)
#
# # Merge checkpoint config with test config by overriding specified nodes.
# ckpt_cfg = OmegaConf.masked_copy(ckpt_cfg, ['model', 'data', 'task'])
# ckpt_cfg.data = OmegaConf.masked_copy(ckpt_cfg.data, [
# key for key in ckpt_cfg.data.keys() if key not in ['data_file', 'split', 'train_val_test_split']
# ])
# cfg = OmegaConf.merge(ckpt_cfg, cfg)
#
# _save_config(cfg, "config.yaml", hydra_output)
# evaluate the model
metric_dict, _ = test(cfg)
# safely retrieve metric value for hydra-based hyperparameter optimization
objective_metric = cfg.get("objective_metric")
if not objective_metric:
return None
if objective_metric not in metric_dict:
raise Exception(
f"Unable to find `objective_metric` ({objective_metric}) in `metric_dict`.\n"
"Make sure `objective_metric` name in `sweep` config is correct."
)
metric_value = metric_dict[objective_metric].item()
log.info(f"Retrieved objective_metric. <{objective_metric}={metric_value}>")
# return optimized metric
return metric_value
if __name__ == "__main__":
main()