libokj's picture
Upload 358 files
05ca42f
raw
history blame
4.85 kB
from pathlib import Path
from typing import List, Optional, Tuple
import lightning
import hydra
import torch
from lightning import Callback, LightningDataModule, LightningModule, Trainer
from lightning.pytorch.loggers import Logger
from omegaconf import DictConfig
from deepscreen.utils.hydra import checkpoint_rerun_config
from deepscreen.utils import get_logger, job_wrapper, instantiate_callbacks, instantiate_loggers, log_hyperparameters
log = get_logger(__name__)
# def fix_dict_config(cfg: DictConfig):
# """fix all vars in the cfg config
# this is an in-place operation"""
# keys = list(cfg.keys())
# for k in keys:
# if type(cfg[k]) is DictConfig:
# fix_dict_config(cfg[k])
# else:
# setattr(cfg, k, getattr(cfg, k))
@job_wrapper(extra_utils=True)
def train(cfg: DictConfig) -> Tuple[dict, dict]:
"""Trains the model. Can additionally evaluate on a testset, using best weights obtained during
training.
This method is wrapped in optional @job_wrapper decorator, that controls the behavior during
failure. Useful for multiruns, saving info about the crash, etc.
Args:
cfg (DictConfig): Configuration composed by Hydra.
Returns:
Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects.
"""
# fix_dict_config(cfg)
# set seed for random number generators in pytorch, numpy and python.random
if cfg.get("seed"):
lightning.seed_everything(cfg.seed, workers=True)
if cfg.get("ckpt_path"):
cfg = checkpoint_rerun_config(cfg)
log.info(f"Instantiating datamodule <{cfg.data._target_}>.")
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data)
log.info(f"Instantiating model <{cfg.model._target_}>.")
model: LightningModule = hydra.utils.instantiate(cfg.model)
log.info("Instantiating callbacks.")
callbacks: List[Callback] = instantiate_callbacks(cfg.get("callbacks"))
log.info("Instantiating loggers.")
logger: List[Logger] = instantiate_loggers(cfg.get("logger"))
log.info(f"Instantiating trainer <{cfg.trainer._target_}>.")
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, callbacks=callbacks, logger=logger)
object_dict = {
"cfg": cfg,
"datamodule": datamodule,
"model": model,
"callbacks": callbacks,
"logger": logger,
"trainer": trainer,
}
# Temporary fix to explicitly initialize UninitializedParameters in LazyModules
# for batch in datamodule.train_dataloader():
# device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# batch = batch.to(device)
# model(batch)
# break
if logger:
log.info("Logging hyperparameters...")
log_hyperparameters(object_dict)
if cfg.get("compile"):
log.info("Compiling model...")
model = torch.compile(model)
log.info("Start training...")
trainer.fit(model=model, datamodule=datamodule, ckpt_path=cfg.get("ckpt_path"))
if trainer.checkpoint_callback.best_model_path:
ckpt_path = Path(trainer.checkpoint_callback.best_model_path).resolve()
log.info(f"Best checkpoint path: {ckpt_path}")
else:
ckpt_path = None
log.warning("Best checkpoint not saved.")
if cfg.data.train_val_test_split[2] is not None:
log.info("Start testing...")
if ckpt_path is None:
log.warning("Best checkpoint not found. Using current weights for testing.")
trainer.test(model=model, datamodule=datamodule, ckpt_path=ckpt_path)
metric_dict = trainer.callback_metrics
metric_dict['ckpt_path'] = ckpt_path
return metric_dict, object_dict
@hydra.main(version_base="1.3", config_path="../configs", config_name="train.yaml")
def main(cfg: DictConfig):
metric_dict, _ = train(cfg)
cfg.ckpt_path = metric_dict.get('ckpt_path')
objective_metrics = cfg.get("objective_metrics")
if not objective_metrics:
return None
else:
invalid_metrics = [metric for metric in objective_metrics if metric not in metric_dict]
if invalid_metrics:
raise ValueError(
f"Unable to find {invalid_metrics} (specified in `objective_metrics`) in `metric_dict`.\n"
"Make sure your `model.metrics` and `sweep.objective_metrics` configs are correct."
)
# metric_value = metric_dict[objective_metric].item()
metric_values = tuple([metric_dict[metric].item() for metric in objective_metrics])
for objective_metric, metric_value in zip(objective_metrics, metric_values):
log.info(f"Retrieved objective: {objective_metric}={metric_value}")
# return optimized metrics
return metric_values
if __name__ == "__main__":
main()