libokj's picture
Update app.py
306f12f
raw
history blame
10.1 kB
import hydra
import os
import pathlib
from pathlib import Path
import sys
import gradio as gr
import pandas as pd
from rdkit import Chem
from rdkit.Chem import RDConfig, Descriptors, Lipinski, Crippen
from deepscreen.predict import predict
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
import sascorer
ROOT = Path.cwd()
# TODO refactor caching with LRU
# MOL_MAP = {}
# def cached_mol(smiles):
# if smiles not in MOL_MAP:
# MOL_MAP.update({smiles: Chem.MolFromSmiles(smiles)})
# return MOL_MAP.get(smiles)
def sa_score(row):
return sascorer.calculateScore(Chem.MolFromSmiles(row['X1']))
def mw(row):
return Chem.Descriptors.MolWt(Chem.MolFromSmiles(row['X1']))
def hbd(row):
return Lipinski.NumHDonors(Chem.MolFromSmiles(row['X1']))
def hba(row):
return Lipinski.NumHAcceptors(Chem.MolFromSmiles(row['X1']))
def logp(row):
return Crippen.MolLogP(Chem.MolFromSmiles(row['X1']))
SCORE_MAP = {
'SAscore': sa_score,
'RAscore': None, # https://github.com/reymond-group/RAscore
'SCScore': None, # https://pubs.acs.org/doi/10.1021/acs.jcim.7b00622
'LogP': logp, # https://www.rdkit.org/docs/source/rdkit.Chem.Crippen.html
'MW': mw, # https://www.rdkit.org/docs/source/rdkit.Chem.Descriptors.html
'HBD': hbd, # https://www.rdkit.org/docs/source/rdkit.Chem.Lipinski.html
'HBA': hba, # https://www.rdkit.org/docs/source/rdkit.Chem.Lipinski.html
'TopoPSA': None, # http://mordred-descriptor.github.io/documentation/master/api/mordred.TopoPSA.html
}
FILTER_MAP = {
'PAINS filter': None,
"Lipinski's rule of five": None, # https://gist.github.com/strets123/fdc4db6d450b66345f46
'ADMET filter': None,
'TCL filter': None
}
TASK_MAP = {
'Drug-target interaction': 'binary',
'Drug-target binding affinity': 'regression',
}
PRESET_MAP = {
'DeepDTA': 'deep_dta',
'GraphDTA': 'graph_dta'
}
TARGET_FAMILY_MAP = {
'Auto-detect': 'detect',
'Manually-labelled': 'labelled',
'Library-labelled': 'labelled',
'Kinases': 'kinases',
'Non-kinase enzymes': 'non-kinase_enzymes',
'Membrane receptors': 'membrane_receptors',
'Nuclear receptors': 'nuclear_receptors',
'Ion channels': 'ion_channels',
'Other protein targets': 'other_protein_targets',
'Kinases (auto-detected)': 'kinases',
'Non-kinase enzymes (auto-detected)': 'non-kinase_enzymes',
'Membrane receptors (auto-detected)': 'membrane_receptors',
'Nuclear receptors (auto-detected)': 'nuclear_receptors',
'Ion channels (auto-detected)': 'ion_channels',
'Other protein targets (auto-detected)': 'other_protein_targets',
'Indiscriminate': 'indiscriminate'
}
TARGET_LIBRARY_MAP = {
'STITCH': 'stitch.csv',
'Drug Repurposing Hub': 'drug_repurposing_hub.csv',
}
DRUG_LIBRARY_MAP = {
'ChEMBL': 'chembl.csv',
'DrugBank': 'drug_bank.csv',
}
MODE_LIST = [
'Drug screening',
'Drug repurposing',
'Drug-target pair'
]
def predictions_to_df(predictions):
predictions = [pd.DataFrame(prediction) for prediction in predictions]
prediction_df = pd.concat(predictions, ignore_index=True)
return prediction_df
def submit_predict(predict_data, task, preset, target_family):
task = TASK_MAP[task]
preset = PRESET_MAP[preset]
target_family = TARGET_FAMILY_MAP[target_family]
match target_family:
case 'labelled':
pass # target_family_list = ...
case 'detect':
pass # target_family_list = ...
case _:
target_family_list = [target_family]
prediction_df = pd.DataFrame()
for target_family in target_family_list:
with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
cfg = hydra.compose(
config_name="webserver_inference",
overrides=[
f"task={task}",
f"preset={preset}",
f"ckpt_path=resources/checkpoints/{preset}-{task}-{target_family}.ckpt",
f"data.data_file='{str(predict_data)}'",
]
)
predictions, _ = predict(cfg)
prediction_df = pd.concat([prediction_df, predictions_to_df(predictions)])
return [gr.DataFrame(value=prediction_df, visible=True), gr.Tabs(selected=1)]
# Define a function that takes a CSV output and a list of analytical utility functions as inputs
def submit_report(df, score_list, filter_list):
# Loop through the list of functions and apply them to the dataframe
for filter_name in filter_list:
gr.Info(f'Applying {filter_name}...')
for score_name in score_list:
gr.Info(f'Calculating {score_name}...')
# Apply the function to the dataframe and assign the result to a new column
df[score_name] = df.apply(SCORE_MAP[score_name], axis=1)
# Return the dataframe as a table
return [gr.DataFrame(visible=False), gr.DataFrame(value=df, visible=True)]
def change_layout(mode):
match mode:
case "Drug screening":
return [
gr.Row(visible=True),
gr.Row(visible=False),
gr.Row(visible=False),
gr.Dropdown(choices=[
'Auto-detect',
'Kinases',
'Non-kinase enzymes',
'Membrane receptors',
'Nuclear receptors',
'Ion channels',
'Other protein targets',
'Indiscriminate'
])
]
case "Drug repurposing":
return [
gr.Row(visible=False),
gr.Row(visible=True),
gr.Row(visible=False),
gr.Dropdown(choices=[
'Library-labelled',
'Indiscriminate'
])
]
case "Drug-target pair":
return [
gr.Row(visible=False),
gr.Row(visible=False),
gr.Row(visible=True),
gr.Dropdown(choices=[
'Auto-detect',
'Manually-labelled',
'Indiscriminate'
])
]
with gr.Blocks(theme=gr.themes.Soft(spacing_size="sm", text_size='md'), title='DeepScreen') as demo:
with gr.Tabs() as tabs:
with gr.TabItem(label='Inference', id=0) as inference:
gr.Markdown('''
# <center>DeepScreen Inference Service</center>
DeepScreen for predicting drug-target interaction/binding affinity.
''')
mode = gr.Radio(label='Mode', choices=MODE_LIST, value='Drug screening')
with gr.Row(visible=True) as drug_screening:
with gr.Column():
target = gr.Textbox(label='Target FASTA sequence')
drug_library = gr.Dropdown(label='Drug library', choices=DRUG_LIBRARY_MAP.keys())
# Modify the pd df directly with df['X2'] = target
with gr.Row(visible=False) as drug_repurposing:
with gr.Column():
drug = gr.Textbox(label='Drug SMILES sequence')
target_library = gr.Dropdown(label='Target library', choices=TARGET_LIBRARY_MAP.keys())
# Modify the pd df directly with df['X1'] = drug
with gr.Row(visible=False) as drug_target_pair:
predict_data = gr.File(label='Prediction dataset file', file_count="single", type='filepath', height=50)
with gr.Row(visible=True):
task = gr.Dropdown(list(TASK_MAP.keys()), label='Task')
preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Preset')
target_family = gr.Dropdown(choices=[
'Auto-detect',
'Kinases',
'Non-kinase enzymes',
'Membrane receptors',
'Nuclear receptors',
'Ion channels',
'Other protein targets',
'Indiscriminate'
], label='Target family')
with gr.Row(visible=True):
predict_btn = gr.Button("Predict", variant="primary")
with gr.TabItem(label='Report', id=1) as report:
gr.Markdown('''
# <center>DeepScreen Virtual Screening Report</center>
Analytic report for virtual screening predictions.
''')
with gr.Row():
scores = gr.CheckboxGroup(SCORE_MAP.keys(), label='Scores')
filters = gr.CheckboxGroup(FILTER_MAP.keys(), label='Filters')
with gr.Row():
df_original = gr.Dataframe(type="pandas", interactive=False, height=500, visible=False)
df_report = gr.Dataframe(type="pandas", interactive=False, height=500, visible=False)
with gr.Row():
clear_btn = gr.ClearButton()
analyze_btn = gr.Button("Report", variant="primary")
mode.change(change_layout, mode, [drug_screening, drug_repurposing, drug_target_pair, target_family], show_progress=False)
predict_btn.click(fn=submit_predict, inputs=[predict_data, task, preset, target_family], outputs=[df_original, tabs])
analyze_btn.click(fn=submit_report, inputs=[df_original, scores, filters], outputs=[df_original, df_report])
# js = """function () {
# gradioURL = window.location.href
# if (!gradioURL.endsWith('?__theme=light')) {
# window.location.replace(gradioURL + '?__theme=light');
# }
# }"""
js="""
() => {
document.body.classList.remove('dark');
document.querySelector('gradio-app').style.backgroundColor = 'var(--color-background-primary)'
}
"""
demo.load(None, None, None, js=js)
demo.close()
demo.launch(debug=True)