libokj's picture
Upload 110 files
6ae852e
import logging
from lightning.pytorch.utilities import rank_zero_only
from lightning.pytorch.utilities.model_summary import ModelSummary
def get_logger(name=__name__) -> logging.Logger:
"""Initializes multi-GPU-friendly python command line logger."""
logger = logging.getLogger(name)
# this ensures all logging levels get marked with the rank zero decorator
# otherwise logs would get multiplied for each GPU process in multi-GPU setup
logging_levels = ("debug", "info", "warning", "error", "exception", "fatal", "critical")
for level in logging_levels:
setattr(logger, level, rank_zero_only(getattr(logger, level)))
return logger
log = get_logger(__name__)
@rank_zero_only
def log_hyperparameters(object_dict: dict) -> None:
"""Controls which config parts are saved by lightning loggers.
Additionally, saves:
- Number of model parameters
"""
hparams = {}
cfg = object_dict["cfg"]
model = object_dict["model"]
trainer = object_dict["trainer"]
if not trainer.logger:
log.warning("Logger not found! Skipping hyperparameter logging.")
return
hparams["model"] = cfg["model"]
# save number of model parameters
model_summary = ModelSummary(model)
hparams["model/params/total"] = model_summary.total_parameters
hparams["model/params/trainable"] = model_summary.trainable_parameters
hparams["model/params/non_trainable"] = model_summary.total_parameters - model_summary.trainable_parameters
hparams["data"] = cfg["data"]
hparams["trainer"] = cfg["trainer"]
hparams["callbacks"] = cfg.get("callbacks")
hparams["extras"] = cfg.get("extras")
hparams["job_name"] = cfg.get("job_name")
hparams["tags"] = cfg.get("tags")
hparams["ckpt_path"] = cfg.get("ckpt_path")
hparams["seed"] = cfg.get("seed")
# send hparams to all loggers
for logger in trainer.loggers:
logger.log_hyperparams(hparams)