Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import hashlib
|
|
|
2 |
import json
|
3 |
import textwrap
|
4 |
import threading
|
@@ -20,7 +21,7 @@ import hydra
|
|
20 |
import pandas as pd
|
21 |
import plotly.express as px
|
22 |
import requests
|
23 |
-
from rdkit.Chem.rdMolDescriptors import CalcNumRotatableBonds, CalcNumHeavyAtoms, CalcNumAtoms
|
24 |
from requests.adapters import HTTPAdapter, Retry
|
25 |
from rdkit import Chem
|
26 |
from rdkit.Chem import RDConfig, Descriptors, Draw, Lipinski, Crippen, PandasTools, AllChem
|
@@ -59,11 +60,13 @@ SESSION.mount('https://', ADAPTER)
|
|
59 |
|
60 |
UNIPROT_ENDPOINT = 'https://rest.uniprot.org/uniprotkb/{query}'
|
61 |
|
|
|
|
|
62 |
CSS = """
|
63 |
.help-tip {
|
64 |
position: absolute;
|
65 |
display: inline-block;
|
66 |
-
top:
|
67 |
right: 0px;
|
68 |
text-align: center;
|
69 |
border-radius: 40%;
|
@@ -204,6 +207,10 @@ def rotatable_bond(row):
|
|
204 |
return CalcNumRotatableBonds((row['Compound']))
|
205 |
|
206 |
|
|
|
|
|
|
|
|
|
207 |
def lipinski(row):
|
208 |
"""
|
209 |
Lipinski's rules:
|
@@ -271,24 +278,72 @@ def ghose(row):
|
|
271 |
return True
|
272 |
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
SCORE_MAP = {
|
275 |
'SAscore': sa_score,
|
276 |
'LogP': logp,
|
277 |
'Molecular weight': mw,
|
|
|
278 |
'Molar refractivity': mr,
|
279 |
'H-bond donor count': hbd,
|
280 |
'H-Bond acceptor count': hba,
|
281 |
'Rotatable bond count': rotatable_bond,
|
282 |
-
|
283 |
}
|
284 |
|
285 |
FILTER_MAP = {
|
|
|
286 |
'REOS': reos,
|
287 |
-
"Lipinski's
|
288 |
'Ghose': ghose,
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
}
|
293 |
|
294 |
TASK_MAP = {
|
@@ -348,10 +403,12 @@ def validate_columns(df, mandatory_cols):
|
|
348 |
|
349 |
|
350 |
def process_target_fasta(sequence):
|
351 |
-
lines = sequence.strip().split("\n")
|
352 |
-
if lines[0].startswith(">"):
|
353 |
-
|
354 |
-
return ''.join(lines).split(">")[0]
|
|
|
|
|
355 |
|
356 |
|
357 |
def send_email(receiver, msg):
|
@@ -480,10 +537,11 @@ def update_df(file, progress=gr.Progress(track_tqdm=True)):
|
|
480 |
df['Scaffold SMILES'] = df['X1'].swifter.progress_bar(
|
481 |
desc=f"Calculating scaffold...").apply(MurckoScaffold.MurckoScaffoldSmilesFromSmiles)
|
482 |
# Add a new column with RDKit molecule objects
|
483 |
-
|
484 |
-
|
|
|
485 |
PandasTools.AddMoleculeColumnToFrame(df, smilesCol='Scaffold SMILES', molCol='Scaffold',
|
486 |
-
includeFingerprints=
|
487 |
DF_FOR_REPORT = df.copy()
|
488 |
|
489 |
# pie_chart = None
|
@@ -665,6 +723,43 @@ def smiles_from_sdf(sdf_path):
|
|
665 |
return Chem.MolToSmiles(suppl[0])
|
666 |
|
667 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
668 |
theme = gr.themes.Base(spacing_size="sm", text_size='md').set(
|
669 |
background_fill_primary='#dfe6f0',
|
670 |
background_fill_secondary='#dfe6f0',
|
@@ -697,10 +792,10 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
697 |
with gr.Tabs() as tabs:
|
698 |
with gr.TabItem(label='Drug hit screening', id=0):
|
699 |
gr.Markdown('''
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
''')
|
705 |
with gr.Blocks() as screen_block:
|
706 |
with gr.Column() as screen_page:
|
@@ -751,13 +846,18 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
751 |
visible=False)
|
752 |
target_family_detect_btn = gr.Button(value='Auto-detect', variant='primary')
|
753 |
|
754 |
-
target_fasta = gr.Code(label='Input or Display FASTA', interactive=True, lines=5)
|
755 |
example_fasta = gr.Button(value='Example: Human MAPK14', elem_id='example')
|
756 |
|
757 |
with gr.Row():
|
758 |
with gr.Column():
|
759 |
drug_library = gr.Dropdown(label='Select a Compound Library',
|
760 |
choices=list(DRUG_LIBRARY_MAP.keys()))
|
|
|
|
|
|
|
|
|
|
|
761 |
drug_library_upload_btn = gr.UploadButton(
|
762 |
label='Upload a custom library', variant='primary')
|
763 |
drug_library_upload = gr.File(label='Custom drug library file', visible=False)
|
@@ -771,7 +871,6 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
771 |
drug_screen_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Select a Preset Model')
|
772 |
screen_preset_recommend_btn = gr.Button(value='Recommend a model', variant='primary')
|
773 |
|
774 |
-
|
775 |
# drug_screen_email = gr.Textbox(
|
776 |
# label='Email (optional)',
|
777 |
# info="Your email will be used to send you notifications when your job finishes."
|
@@ -791,11 +890,24 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
791 |
|
792 |
with gr.TabItem(label='Target protein identification', id=1):
|
793 |
gr.Markdown('''
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
799 |
''')
|
800 |
with gr.Blocks() as identify_block:
|
801 |
with gr.Column() as identify_page:
|
@@ -816,9 +928,8 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
816 |
interactive=True)
|
817 |
compound_upload_btn = gr.UploadButton(label='Upload', variant='primary', type='binary')
|
818 |
|
819 |
-
|
820 |
-
|
821 |
-
label='Target Protein Family')
|
822 |
|
823 |
compound_smiles = gr.Code(label='Input or Display Compound SMILES', interactive=True, lines=5)
|
824 |
example_drug = gr.Button(value='Example: Aspirin', elem_id='example')
|
@@ -827,6 +938,11 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
827 |
with gr.Column():
|
828 |
target_library = gr.Dropdown(label='Select a Target Library',
|
829 |
choices=list(TARGET_LIBRARY_MAP.keys()))
|
|
|
|
|
|
|
|
|
|
|
830 |
target_library_upload_btn = gr.UploadButton(
|
831 |
label='Upload a custom library', variant='primary')
|
832 |
target_library_upload = gr.File(label='Custom target library file', visible=False)
|
@@ -841,7 +957,6 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
841 |
target_identify_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Preset')
|
842 |
identify_preset_recommend_btn = gr.Button(value='Recommend a model', variant='primary')
|
843 |
|
844 |
-
|
845 |
# with gr.Row():
|
846 |
# target_identify_email = gr.Textbox(
|
847 |
# label='Email (optional)',
|
@@ -861,41 +976,51 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
861 |
gr.Markdown('''
|
862 |
# <center>DeepSEQreen Interaction Pair Inference</center>
|
863 |
<center>To predict interactions/binding affinities between any drug-target pairs.</center>
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
gr.Markdown("""
|
869 |
-
Please upload a custom dataset CSV file with 2 required string columns and optionally 2 ID columns:
|
870 |
|
871 |
<b>X1</b>: the SMILES string of a compound\n
|
872 |
<b>X2</b>: the FASTA sequence of a target\n
|
873 |
-
<b>ID1</b
|
874 |
-
<b>
|
875 |
|
876 |
-
Example:
|
877 |
|
878 |
| X1 | X2 | ID1 | ID2 |
|
879 |
|---------------------------------------- |---------------|--------------|--------|
|
880 |
| CCOC(=O)Nc1ccc(NCc2ccc(F)cc2)cc1N | MVQKSRNGGV... | CHEMBL41355 | O88943 |
|
881 |
| CCCCCc1cc(O)c(C/C=C(\C)CCC=C(C)C)c(O)c1 | MTSPSSSPVF... | CHEMBL497318 | Q9Y5S1 |
|
882 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
883 |
gr.File(label="Example custom dataset",
|
884 |
value="data/examples/interaction_pair_inference.csv",
|
885 |
interactive=False)
|
886 |
with gr.Column():
|
887 |
infer_data_for_predict = gr.File(
|
888 |
-
label='
|
889 |
with gr.Column() as pair_generate:
|
890 |
-
gr.
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
899 |
|
900 |
with gr.Row(visible=True):
|
901 |
pair_infer_task = gr.Dropdown(list(TASK_MAP.keys()), label='Task')
|
@@ -925,7 +1050,9 @@ a prediction job.
|
|
925 |
# <center>DeepSEQreen Chemical Property Report</center>
|
926 |
<center>
|
927 |
To compute chemical properties for the predictions of drug hit screening,
|
928 |
-
target protein identification, and interaction pair inference.
|
|
|
|
|
929 |
your own dataset. The page shows only a preview report displaying at most 30 records
|
930 |
(with top predicted DTI/DTA if reporting results from a prediction job). For a full report, please
|
931 |
generate and download a raw data CSV or interactive table HTML file below.
|
@@ -1002,6 +1129,7 @@ a prediction job.
|
|
1002 |
case 'UniProt ID':
|
1003 |
query = f"{uid.strip()}.fasta"
|
1004 |
case 'Gene symbol':
|
|
|
1005 |
query = f'search?query=organism_name:{organism.strip()}+AND+gene:{gene.strip()}&format=fasta'
|
1006 |
|
1007 |
try:
|
@@ -1031,7 +1159,8 @@ a prediction job.
|
|
1031 |
desc="Detecting protein family of the target...").apply(align_score)
|
1032 |
row = alignment_df.loc[alignment_df['score'].idxmax()]
|
1033 |
return gr.Dropdown(value=row['protein_family'].capitalize(),
|
1034 |
-
info=f"Reason: Best BLASTP score ({row['score']})
|
|
|
1035 |
|
1036 |
|
1037 |
target_family_detect_btn.click(fn=target_family_detect, inputs=target_fasta, outputs=drug_screen_target_family)
|
@@ -1132,6 +1261,7 @@ QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
|
1132 |
x.name, gr.Dropdown(value=Path(x.name).name, choices=list(TARGET_LIBRARY_MAP.keys()) + [Path(x.name).name])
|
1133 |
], inputs=target_library_upload_btn, outputs=[target_library_upload, target_library])
|
1134 |
|
|
|
1135 |
def identify_recommend_model(smiles, task):
|
1136 |
if task == 'Drug-target interaction':
|
1137 |
train = pd.read_csv('data/benchmarks/all_families_reduced_dti_train.csv')
|
@@ -1161,6 +1291,31 @@ QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
|
1161 |
outputs=target_identify_preset)
|
1162 |
|
1163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1164 |
def drug_screen_validate(fasta, library, library_upload, state, progress=gr.Progress(track_tqdm=True)):
|
1165 |
if not state:
|
1166 |
try:
|
@@ -1171,14 +1326,10 @@ QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
|
1171 |
if library in DRUG_LIBRARY_MAP.keys():
|
1172 |
screen_df = pd.read_csv(Path('data/drug_libraries', DRUG_LIBRARY_MAP[library]))
|
1173 |
else:
|
1174 |
-
|
1175 |
-
|
1176 |
-
|
1177 |
-
|
1178 |
-
smilesName='X1', molColName='Compound', includeFingerprints=True)
|
1179 |
-
else:
|
1180 |
-
raise gr.Error('Currently only CSV and SDF files are supported.')
|
1181 |
-
validate_columns(screen_df, ['X1'])
|
1182 |
|
1183 |
screen_df['X2'] = fasta
|
1184 |
|
@@ -1214,17 +1365,10 @@ QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
|
1214 |
if library in TARGET_LIBRARY_MAP.keys():
|
1215 |
identify_df = pd.read_csv(Path('data/target_libraries', TARGET_LIBRARY_MAP[library]))
|
1216 |
else:
|
1217 |
-
|
1218 |
-
|
1219 |
-
|
1220 |
-
|
1221 |
-
id2 = [record.id for record in records]
|
1222 |
-
seq = [str(record.seq) for record in records]
|
1223 |
-
identify_df = pd.DataFrame({'ID2': id2, 'X2': seq})
|
1224 |
-
else:
|
1225 |
-
raise 'Currently only csv and fasta files are supported.'
|
1226 |
-
validate_columns(identify_df, ['X2'])
|
1227 |
-
|
1228 |
identify_df['X1'] = smiles
|
1229 |
|
1230 |
job_id = uuid4()
|
@@ -1250,25 +1394,57 @@ QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
|
1250 |
# return {identify_flag: False}
|
1251 |
|
1252 |
|
1253 |
-
def pair_infer_validate(drug_target_pair_upload, state,
|
|
|
1254 |
if not state:
|
1255 |
try:
|
1256 |
-
|
1257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1258 |
|
1259 |
-
|
1260 |
-
|
1261 |
-
|
1262 |
-
raise ValueError(f"Encountered invalid SMILES:\n{df[~df['X1_ERR'].isna()][['X1', 'X1_ERR']]}")
|
1263 |
|
1264 |
-
|
1265 |
-
|
1266 |
-
|
1267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1268 |
|
1269 |
-
job_id = uuid4()
|
1270 |
-
return {infer_flag: job_id,
|
1271 |
-
run_state: job_id}
|
1272 |
except Exception as e:
|
1273 |
gr.Warning(f'Failed to submit the job due to error: {str(e)}')
|
1274 |
return {infer_flag: False,
|
@@ -1319,8 +1495,8 @@ QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
|
1319 |
|
1320 |
pair_infer_btn.click(
|
1321 |
fn=pair_infer_validate,
|
1322 |
-
inputs=[infer_data_for_predict, run_state], # , drug_screen_email],
|
1323 |
-
outputs=[infer_flag, run_state]
|
1324 |
).then(
|
1325 |
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
|
1326 |
outputs=[infer_page, infer_waiting]
|
|
|
1 |
import hashlib
|
2 |
+
import itertools
|
3 |
import json
|
4 |
import textwrap
|
5 |
import threading
|
|
|
21 |
import pandas as pd
|
22 |
import plotly.express as px
|
23 |
import requests
|
24 |
+
from rdkit.Chem.rdMolDescriptors import CalcNumRotatableBonds, CalcNumHeavyAtoms, CalcNumAtoms, CalcTPSA
|
25 |
from requests.adapters import HTTPAdapter, Retry
|
26 |
from rdkit import Chem
|
27 |
from rdkit.Chem import RDConfig, Descriptors, Draw, Lipinski, Crippen, PandasTools, AllChem
|
|
|
60 |
|
61 |
UNIPROT_ENDPOINT = 'https://rest.uniprot.org/uniprotkb/{query}'
|
62 |
|
63 |
+
CUSTOM_DATASET_MAX_LEN = 10_000
|
64 |
+
|
65 |
CSS = """
|
66 |
.help-tip {
|
67 |
position: absolute;
|
68 |
display: inline-block;
|
69 |
+
top: 16px;
|
70 |
right: 0px;
|
71 |
text-align: center;
|
72 |
border-radius: 40%;
|
|
|
207 |
return CalcNumRotatableBonds((row['Compound']))
|
208 |
|
209 |
|
210 |
+
def tpsa(row):
|
211 |
+
return CalcTPSA((row['Compound']))
|
212 |
+
|
213 |
+
|
214 |
def lipinski(row):
|
215 |
"""
|
216 |
Lipinski's rules:
|
|
|
278 |
return True
|
279 |
|
280 |
|
281 |
+
def veber(row):
|
282 |
+
"""
|
283 |
+
The Veber filter is a rule of thumb filter for orally active drugs described in
|
284 |
+
Veber et al., J Med Chem. 2002; 45(12): 2615-23.:
|
285 |
+
Rotatable bonds <= 10
|
286 |
+
Topological polar surface area <= 140
|
287 |
+
"""
|
288 |
+
if not rotatable_bond(row) <= 10:
|
289 |
+
return False
|
290 |
+
elif not tpsa(row) <= 140:
|
291 |
+
return False
|
292 |
+
else:
|
293 |
+
return True
|
294 |
+
|
295 |
+
|
296 |
+
def rule_of_three(row):
|
297 |
+
"""
|
298 |
+
Rule of Three filter (Congreve et al., Drug Discov. Today. 8 (19): 876–7, (2003).):
|
299 |
+
Molecular weight <= 300
|
300 |
+
LogP <= 3
|
301 |
+
H-bond donor <= 3
|
302 |
+
H-bond acceptor count <= 3
|
303 |
+
Rotatable bond count <= 3
|
304 |
+
"""
|
305 |
+
if not mw(row) <= 300:
|
306 |
+
return False
|
307 |
+
elif not logp(row) <= 3:
|
308 |
+
return False
|
309 |
+
elif not hbd(row) <= 3:
|
310 |
+
return False
|
311 |
+
elif not hba(row) <= 3:
|
312 |
+
return False
|
313 |
+
elif not rotatable_bond(row) <= 3:
|
314 |
+
return False
|
315 |
+
else:
|
316 |
+
return True
|
317 |
+
|
318 |
+
|
319 |
+
# def smarts_filter():
|
320 |
+
# alerts = Chem.MolFromSmarts("enter one smart here")
|
321 |
+
# detected_alerts = []
|
322 |
+
# for smiles in data['X1']:
|
323 |
+
# mol = Chem.MolFromSmiles(smiles)
|
324 |
+
# detected_alerts.append(mol.HasSubstructMatch(alerts))
|
325 |
+
|
326 |
+
|
327 |
SCORE_MAP = {
|
328 |
'SAscore': sa_score,
|
329 |
'LogP': logp,
|
330 |
'Molecular weight': mw,
|
331 |
+
'Number of heavy atoms': heavy_atom,
|
332 |
'Molar refractivity': mr,
|
333 |
'H-bond donor count': hbd,
|
334 |
'H-Bond acceptor count': hba,
|
335 |
'Rotatable bond count': rotatable_bond,
|
336 |
+
'Topological polar surface area': tpsa,
|
337 |
}
|
338 |
|
339 |
FILTER_MAP = {
|
340 |
+
# TODO support number_of_violations
|
341 |
'REOS': reos,
|
342 |
+
"Lipinski's Rule of Five": lipinski,
|
343 |
'Ghose': ghose,
|
344 |
+
'Rule of Three': rule_of_three,
|
345 |
+
'Veber': veber,
|
346 |
+
'PAINS': pains,
|
347 |
}
|
348 |
|
349 |
TASK_MAP = {
|
|
|
403 |
|
404 |
|
405 |
def process_target_fasta(sequence):
|
406 |
+
# lines = sequence.strip().split("\n")
|
407 |
+
# if lines[0].startswith(">"):
|
408 |
+
# lines = lines[1:]
|
409 |
+
# return ''.join(lines).split(">")[0]
|
410 |
+
record = SeqIO.parse(io.StringIO(sequence), "fasta")[0]
|
411 |
+
return str(record.seq)
|
412 |
|
413 |
|
414 |
def send_email(receiver, msg):
|
|
|
537 |
df['Scaffold SMILES'] = df['X1'].swifter.progress_bar(
|
538 |
desc=f"Calculating scaffold...").apply(MurckoScaffold.MurckoScaffoldSmilesFromSmiles)
|
539 |
# Add a new column with RDKit molecule objects
|
540 |
+
if 'Compound' not in df.columns or df['Compound'].dtype != 'object':
|
541 |
+
PandasTools.AddMoleculeColumnToFrame(df, smilesCol='X1', molCol='Compound',
|
542 |
+
includeFingerprints=True)
|
543 |
PandasTools.AddMoleculeColumnToFrame(df, smilesCol='Scaffold SMILES', molCol='Scaffold',
|
544 |
+
includeFingerprints=True)
|
545 |
DF_FOR_REPORT = df.copy()
|
546 |
|
547 |
# pie_chart = None
|
|
|
723 |
return Chem.MolToSmiles(suppl[0])
|
724 |
|
725 |
|
726 |
+
def drug_library_from_sdf(sdf_path):
|
727 |
+
return PandasTools.LoadSDF(
|
728 |
+
sdf_path,
|
729 |
+
smilesName='X1', molColName='Compound', includeFingerprints=True
|
730 |
+
)
|
731 |
+
|
732 |
+
|
733 |
+
def process_target_library_upload(library_upload):
|
734 |
+
if library_upload.endswith('.csv'):
|
735 |
+
identify_df = pd.read_csv(library_upload)
|
736 |
+
elif library_upload.endswith('.fasta'):
|
737 |
+
identify_df = target_library_from_fasta(library_upload)
|
738 |
+
else:
|
739 |
+
raise gr.Error('Currently only CSV and FASTA files are supported as target libraries.')
|
740 |
+
validate_columns(identify_df, ['X2'])
|
741 |
+
return library_upload
|
742 |
+
|
743 |
+
|
744 |
+
def process_drug_library_upload(library_upload):
|
745 |
+
if library_upload.endswith('.csv'):
|
746 |
+
screen_df = pd.read_csv(library_upload)
|
747 |
+
elif library_upload.endswith('.sdf'):
|
748 |
+
screen_df = drug_library_from_sdf(library_upload)
|
749 |
+
else:
|
750 |
+
raise gr.Error('Currently only CSV and SDF files are supported as drug libraries.')
|
751 |
+
validate_columns(screen_df, ['X1'])
|
752 |
+
return library_upload
|
753 |
+
|
754 |
+
|
755 |
+
def target_library_from_fasta(fasta_path):
|
756 |
+
records = list(SeqIO.parse(fasta_path, "fasta"))
|
757 |
+
id2 = [record.id for record in records]
|
758 |
+
seq = [str(record.seq) for record in records]
|
759 |
+
df = pd.DataFrame({'ID2': id2, 'X2': seq})
|
760 |
+
return df
|
761 |
+
|
762 |
+
|
763 |
theme = gr.themes.Base(spacing_size="sm", text_size='md').set(
|
764 |
background_fill_primary='#dfe6f0',
|
765 |
background_fill_secondary='#dfe6f0',
|
|
|
792 |
with gr.Tabs() as tabs:
|
793 |
with gr.TabItem(label='Drug hit screening', id=0):
|
794 |
gr.Markdown('''
|
795 |
+
# <center>DeepSEQreen Drug Hit Screening</center>
|
796 |
+
<center>
|
797 |
+
To predict interactions/binding affinities of a single target against a library of drugs.
|
798 |
+
</center>
|
799 |
''')
|
800 |
with gr.Blocks() as screen_block:
|
801 |
with gr.Column() as screen_page:
|
|
|
846 |
visible=False)
|
847 |
target_family_detect_btn = gr.Button(value='Auto-detect', variant='primary')
|
848 |
|
849 |
+
target_fasta = gr.Code(label='Input or Display FASTA', interactive=True, lines=5, max_lines=5)
|
850 |
example_fasta = gr.Button(value='Example: Human MAPK14', elem_id='example')
|
851 |
|
852 |
with gr.Row():
|
853 |
with gr.Column():
|
854 |
drug_library = gr.Dropdown(label='Select a Compound Library',
|
855 |
choices=list(DRUG_LIBRARY_MAP.keys()))
|
856 |
+
with gr.Row():
|
857 |
+
gr.File(label='Example SDF drug library',
|
858 |
+
value='data/examples/drug_library.sdf', interactive=False)
|
859 |
+
gr.File(label='Example CSV drug library',
|
860 |
+
value='data/examples/drug_library.csv', interactive=False)
|
861 |
drug_library_upload_btn = gr.UploadButton(
|
862 |
label='Upload a custom library', variant='primary')
|
863 |
drug_library_upload = gr.File(label='Custom drug library file', visible=False)
|
|
|
871 |
drug_screen_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Select a Preset Model')
|
872 |
screen_preset_recommend_btn = gr.Button(value='Recommend a model', variant='primary')
|
873 |
|
|
|
874 |
# drug_screen_email = gr.Textbox(
|
875 |
# label='Email (optional)',
|
876 |
# info="Your email will be used to send you notifications when your job finishes."
|
|
|
890 |
|
891 |
with gr.TabItem(label='Target protein identification', id=1):
|
892 |
gr.Markdown('''
|
893 |
+
# <center>DeepSEQreen Target Protein Identification</center>
|
894 |
+
|
895 |
+
<center>
|
896 |
+
To predict interactions/binding affinities of a single drug against a library of protein targets.
|
897 |
+
</center>
|
898 |
+
|
899 |
+
ℹ️ A custom target library can be a FASTA file with a single or multiple amino acid sequences,
|
900 |
+
or a CSV file has a required FASTA string column and optionally an ID column:
|
901 |
+
|
902 |
+
<b>X2</b>: the FASTA sequence of a target\n
|
903 |
+
<b>ID2</b> (optional): the ID (PubChem or any arbitrary unique identifier) of a compound\n
|
904 |
+
|
905 |
+
Example CSV target library:
|
906 |
+
|
907 |
+
| X2 | ID2 |
|
908 |
+
|---------------|--------|
|
909 |
+
| MVQKSRNGGV... | O88943 |
|
910 |
+
| MTSPSSSPVF... | Q9Y5S1 |
|
911 |
''')
|
912 |
with gr.Blocks() as identify_block:
|
913 |
with gr.Column() as identify_page:
|
|
|
928 |
interactive=True)
|
929 |
compound_upload_btn = gr.UploadButton(label='Upload', variant='primary', type='binary')
|
930 |
|
931 |
+
target_identify_target_family = gr.Dropdown(choices=['General'], value='General',
|
932 |
+
label='Target Protein Family')
|
|
|
933 |
|
934 |
compound_smiles = gr.Code(label='Input or Display Compound SMILES', interactive=True, lines=5)
|
935 |
example_drug = gr.Button(value='Example: Aspirin', elem_id='example')
|
|
|
938 |
with gr.Column():
|
939 |
target_library = gr.Dropdown(label='Select a Target Library',
|
940 |
choices=list(TARGET_LIBRARY_MAP.keys()))
|
941 |
+
with gr.Row():
|
942 |
+
gr.File(label='Example FASTA target library',
|
943 |
+
value='data/examples/target_library.fasta', interactive=False)
|
944 |
+
gr.File(label='Example CSV target library',
|
945 |
+
value='data/examples/target_library.csv', interactive=False)
|
946 |
target_library_upload_btn = gr.UploadButton(
|
947 |
label='Upload a custom library', variant='primary')
|
948 |
target_library_upload = gr.File(label='Custom target library file', visible=False)
|
|
|
957 |
target_identify_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Preset')
|
958 |
identify_preset_recommend_btn = gr.Button(value='Recommend a model', variant='primary')
|
959 |
|
|
|
960 |
# with gr.Row():
|
961 |
# target_identify_email = gr.Textbox(
|
962 |
# label='Email (optional)',
|
|
|
976 |
gr.Markdown('''
|
977 |
# <center>DeepSEQreen Interaction Pair Inference</center>
|
978 |
<center>To predict interactions/binding affinities between any drug-target pairs.</center>
|
979 |
+
|
980 |
+
ℹ️ A custom interaction pair dataset can be generated from a FASTA file containing multiple sequences
|
981 |
+
and a SDF file containing multiple compounds (for predicting DTI/DTA of all possible combinations of
|
982 |
+
drug-target pairs), or a CSV file with 2 required string columns and optionally 2 ID columns:
|
|
|
|
|
983 |
|
984 |
<b>X1</b>: the SMILES string of a compound\n
|
985 |
<b>X2</b>: the FASTA sequence of a target\n
|
986 |
+
<b>ID1</b> (optional): the ID (PubChem or any arbitrary unique identifier) of a compound\n
|
987 |
+
<b>ID2</b> (optional): the ID (UniProt or any arbitrary unique identifier) of a target
|
988 |
|
989 |
+
Example CSV interaction pair dataset:
|
990 |
|
991 |
| X1 | X2 | ID1 | ID2 |
|
992 |
|---------------------------------------- |---------------|--------------|--------|
|
993 |
| CCOC(=O)Nc1ccc(NCc2ccc(F)cc2)cc1N | MVQKSRNGGV... | CHEMBL41355 | O88943 |
|
994 |
| CCCCCc1cc(O)c(C/C=C(\C)CCC=C(C)C)c(O)c1 | MTSPSSSPVF... | CHEMBL497318 | Q9Y5S1 |
|
995 |
+
''')
|
996 |
+
with gr.Blocks() as infer_block:
|
997 |
+
with gr.Column() as infer_page:
|
998 |
+
infer_type = gr.Dropdown(choices=['Upload a drug library and a target library',
|
999 |
+
'Upload a CSV interaction pair dataset'],
|
1000 |
+
value='Upload a drug library and a target library')
|
1001 |
+
with gr.Column() as pair_upload:
|
1002 |
gr.File(label="Example custom dataset",
|
1003 |
value="data/examples/interaction_pair_inference.csv",
|
1004 |
interactive=False)
|
1005 |
with gr.Column():
|
1006 |
infer_data_for_predict = gr.File(
|
1007 |
+
label='Upload a custom dataset', file_count="single", type='filepath', visible=True)
|
1008 |
with gr.Column() as pair_generate:
|
1009 |
+
with gr.Row():
|
1010 |
+
gr.File(label='Example SDF drug library',
|
1011 |
+
value='data/examples/drug_library.sdf', interactive=False)
|
1012 |
+
gr.File(label='Example FASTA target library',
|
1013 |
+
value='data/examples/target_library.fasta', interactive=False)
|
1014 |
+
with gr.Row():
|
1015 |
+
gr.File(label='Example CSV drug library',
|
1016 |
+
value='data/examples/drug_library.csv', interactive=False)
|
1017 |
+
gr.File(label='Example CSV target library',
|
1018 |
+
value='data/examples/target_library.csv', interactive=False)
|
1019 |
+
with gr.Row():
|
1020 |
+
infer_drug = gr.File(label='SDF/CSV file containing multiple compounds',
|
1021 |
+
file_count="single", type='filepath')
|
1022 |
+
infer_target = gr.File(label='FASTA/CSV file containing multiple targets',
|
1023 |
+
file_count="single", type='filepath')
|
1024 |
|
1025 |
with gr.Row(visible=True):
|
1026 |
pair_infer_task = gr.Dropdown(list(TASK_MAP.keys()), label='Task')
|
|
|
1050 |
# <center>DeepSEQreen Chemical Property Report</center>
|
1051 |
<center>
|
1052 |
To compute chemical properties for the predictions of drug hit screening,
|
1053 |
+
target protein identification, and interaction pair inference.
|
1054 |
+
|
1055 |
+
You may also upload
|
1056 |
your own dataset. The page shows only a preview report displaying at most 30 records
|
1057 |
(with top predicted DTI/DTA if reporting results from a prediction job). For a full report, please
|
1058 |
generate and download a raw data CSV or interactive table HTML file below.
|
|
|
1129 |
case 'UniProt ID':
|
1130 |
query = f"{uid.strip()}.fasta"
|
1131 |
case 'Gene symbol':
|
1132 |
+
organism = organism if organism else 'Human'
|
1133 |
query = f'search?query=organism_name:{organism.strip()}+AND+gene:{gene.strip()}&format=fasta'
|
1134 |
|
1135 |
try:
|
|
|
1159 |
desc="Detecting protein family of the target...").apply(align_score)
|
1160 |
row = alignment_df.loc[alignment_df['score'].idxmax()]
|
1161 |
return gr.Dropdown(value=row['protein_family'].capitalize(),
|
1162 |
+
info=f"Reason: Best BLASTP score ({row['score']}) "
|
1163 |
+
f"with {row['ID2']} from family {row['protein_family']}")
|
1164 |
|
1165 |
|
1166 |
target_family_detect_btn.click(fn=target_family_detect, inputs=target_fasta, outputs=drug_screen_target_family)
|
|
|
1261 |
x.name, gr.Dropdown(value=Path(x.name).name, choices=list(TARGET_LIBRARY_MAP.keys()) + [Path(x.name).name])
|
1262 |
], inputs=target_library_upload_btn, outputs=[target_library_upload, target_library])
|
1263 |
|
1264 |
+
|
1265 |
def identify_recommend_model(smiles, task):
|
1266 |
if task == 'Drug-target interaction':
|
1267 |
train = pd.read_csv('data/benchmarks/all_families_reduced_dti_train.csv')
|
|
|
1291 |
outputs=target_identify_preset)
|
1292 |
|
1293 |
|
1294 |
+
def infer_type_change(upload_type):
|
1295 |
+
match upload_type:
|
1296 |
+
case "Upload a drug library and a target library":
|
1297 |
+
return {
|
1298 |
+
pair_upload: gr.Column(visible=False),
|
1299 |
+
pair_generate: gr.Column(visible=True),
|
1300 |
+
infer_data_for_predict: None,
|
1301 |
+
infer_drug: None,
|
1302 |
+
infer_target: None
|
1303 |
+
}
|
1304 |
+
match upload_type:
|
1305 |
+
case "Upload a CSV interaction pair dataset":
|
1306 |
+
return {
|
1307 |
+
pair_upload: gr.Column(visible=True),
|
1308 |
+
pair_generate: gr.Column(visible=False),
|
1309 |
+
infer_data_for_predict: None,
|
1310 |
+
infer_drug: None,
|
1311 |
+
infer_target: None
|
1312 |
+
}
|
1313 |
+
|
1314 |
+
|
1315 |
+
infer_type.select(fn=infer_type_change, inputs=infer_type,
|
1316 |
+
outputs=[pair_upload, pair_generate, infer_data_for_predict, infer_drug, infer_target])
|
1317 |
+
|
1318 |
+
|
1319 |
def drug_screen_validate(fasta, library, library_upload, state, progress=gr.Progress(track_tqdm=True)):
|
1320 |
if not state:
|
1321 |
try:
|
|
|
1326 |
if library in DRUG_LIBRARY_MAP.keys():
|
1327 |
screen_df = pd.read_csv(Path('data/drug_libraries', DRUG_LIBRARY_MAP[library]))
|
1328 |
else:
|
1329 |
+
screen_df = process_drug_library_upload(library_upload)
|
1330 |
+
if len(screen_df) >= CUSTOM_DATASET_MAX_LEN:
|
1331 |
+
raise gr.Error(f'The uploaded drug library has more records '
|
1332 |
+
f'than the allowed maximum (CUSTOM_DATASET_MAX_LEN).')
|
|
|
|
|
|
|
|
|
1333 |
|
1334 |
screen_df['X2'] = fasta
|
1335 |
|
|
|
1365 |
if library in TARGET_LIBRARY_MAP.keys():
|
1366 |
identify_df = pd.read_csv(Path('data/target_libraries', TARGET_LIBRARY_MAP[library]))
|
1367 |
else:
|
1368 |
+
identify_df = process_target_library_upload(library_upload)
|
1369 |
+
if len(identify_df) >= CUSTOM_DATASET_MAX_LEN:
|
1370 |
+
raise gr.Error(f'The uploaded target library has more records '
|
1371 |
+
f'than the allowed maximum (CUSTOM_DATASET_MAX_LEN).')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1372 |
identify_df['X1'] = smiles
|
1373 |
|
1374 |
job_id = uuid4()
|
|
|
1394 |
# return {identify_flag: False}
|
1395 |
|
1396 |
|
1397 |
+
def pair_infer_validate(drug_target_pair_upload, drug_upload, target_upload, state,
|
1398 |
+
progress=gr.Progress(track_tqdm=True)):
|
1399 |
if not state:
|
1400 |
try:
|
1401 |
+
job_id = uuid4()
|
1402 |
+
if drug_target_pair_upload:
|
1403 |
+
infer_df = pd.read_csv(drug_target_pair_upload)
|
1404 |
+
validate_columns(infer_df, ['X1', 'X2'])
|
1405 |
+
|
1406 |
+
infer_df['X1_ERR'] = infer_df['X1'].swifter.progress_bar(desc="Validating SMILES...").apply(
|
1407 |
+
validate_seq_str, regex=SMILES_PAT)
|
1408 |
+
if not infer_df['X1_ERR'].isna().all():
|
1409 |
+
raise ValueError(
|
1410 |
+
f"Encountered invalid SMILES:\n{infer_df[~infer_df['X1_ERR'].isna()][['X1', 'X1_ERR']]}")
|
1411 |
+
|
1412 |
+
infer_df['X2_ERR'] = infer_df['X2'].swifter.progress_bar(desc="Validating FASTA...").apply(
|
1413 |
+
validate_seq_str, regex=FASTA_PAT)
|
1414 |
+
if not infer_df['X2_ERR'].isna().all():
|
1415 |
+
raise ValueError(
|
1416 |
+
f"Encountered invalid FASTA:\n{infer_df[~infer_df['X2_ERR'].isna()][['X2', 'X2_ERR']]}")
|
1417 |
+
|
1418 |
+
return {infer_data_for_predict: str(drug_target_pair_upload),
|
1419 |
+
infer_flag: job_id,
|
1420 |
+
run_state: job_id}
|
1421 |
|
1422 |
+
elif drug_upload and target_upload:
|
1423 |
+
drug_df = process_drug_library_upload(drug_upload)
|
1424 |
+
target_df = process_target_library_upload(target_upload)
|
|
|
1425 |
|
1426 |
+
drug_df.drop_duplicates(subset=['X1'], inplace=True)
|
1427 |
+
target_df.drop_duplicates(subset=['X2'], inplace=True)
|
1428 |
+
|
1429 |
+
infer_df = pd.DataFrame(list(itertools.product(drug_df['X1'], target_df['X2'])),
|
1430 |
+
columns=['X1', 'X2'])
|
1431 |
+
infer_df = infer_df.merge(drug_df, on='X1').merge(target_df, on='X2')
|
1432 |
+
|
1433 |
+
temp_file = Path(f'temp/{job_id}_input.csv').resolve()
|
1434 |
+
infer_df.to_csv(temp_file, index=False)
|
1435 |
+
if temp_file.is_file():
|
1436 |
+
return {infer_data_for_predict: str(temp_file),
|
1437 |
+
infer_flag: job_id,
|
1438 |
+
run_state: job_id}
|
1439 |
+
|
1440 |
+
else:
|
1441 |
+
raise gr.Error('Should upload a drug-target pair dataset,or '
|
1442 |
+
'upload both a drug library and a target library.')
|
1443 |
+
|
1444 |
+
if len(infer_df) >= CUSTOM_DATASET_MAX_LEN:
|
1445 |
+
raise gr.Error(f'The uploaded/generated drug-target pair dataset has more records '
|
1446 |
+
f'than the allowed maximum (CUSTOM_DATASET_MAX_LEN).')
|
1447 |
|
|
|
|
|
|
|
1448 |
except Exception as e:
|
1449 |
gr.Warning(f'Failed to submit the job due to error: {str(e)}')
|
1450 |
return {infer_flag: False,
|
|
|
1495 |
|
1496 |
pair_infer_btn.click(
|
1497 |
fn=pair_infer_validate,
|
1498 |
+
inputs=[infer_data_for_predict, infer_drug, infer_target, run_state], # , drug_screen_email],
|
1499 |
+
outputs=[infer_data_for_predict, infer_flag, run_state]
|
1500 |
).then(
|
1501 |
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
|
1502 |
outputs=[infer_page, infer_waiting]
|