Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -347,8 +347,8 @@ FILTER_MAP = {
|
|
347 |
}
|
348 |
|
349 |
TASK_MAP = {
|
350 |
-
'Compound-protein interaction': '
|
351 |
-
'Compound-protein binding affinity': '
|
352 |
}
|
353 |
|
354 |
PRESET_MAP = {
|
@@ -1194,10 +1194,10 @@ QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
|
1194 |
|
1195 |
def screen_recommend_model(fasta, family, task):
|
1196 |
task = TASK_MAP[task]
|
1197 |
-
if task == '
|
1198 |
train = pd.read_csv('data/benchmarks/all_families_reduced_dti_train.csv')
|
1199 |
score = 'AUROC'
|
1200 |
-
elif task == '
|
1201 |
train = pd.read_csv('data/benchmarks/all_families_reduced_dta_train.csv')
|
1202 |
score = 'CI'
|
1203 |
|
@@ -1264,10 +1264,10 @@ QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
|
1264 |
|
1265 |
def identify_recommend_model(smiles, task):
|
1266 |
task = TASK_MAP[task]
|
1267 |
-
if task == '
|
1268 |
train = pd.read_csv('data/benchmarks/all_families_reduced_dti_train.csv')
|
1269 |
score = 'AUROC'
|
1270 |
-
elif task == '
|
1271 |
train = pd.read_csv('data/benchmarks/all_families_reduced_dta_train.csv')
|
1272 |
score = 'CI'
|
1273 |
if smiles not in train['X1']:
|
|
|
347 |
}
|
348 |
|
349 |
TASK_MAP = {
|
350 |
+
'Compound-protein interaction': 'DTI',
|
351 |
+
'Compound-protein binding affinity': 'DTA',
|
352 |
}
|
353 |
|
354 |
PRESET_MAP = {
|
|
|
1194 |
|
1195 |
def screen_recommend_model(fasta, family, task):
|
1196 |
task = TASK_MAP[task]
|
1197 |
+
if task == 'DTI':
|
1198 |
train = pd.read_csv('data/benchmarks/all_families_reduced_dti_train.csv')
|
1199 |
score = 'AUROC'
|
1200 |
+
elif task == 'DTA':
|
1201 |
train = pd.read_csv('data/benchmarks/all_families_reduced_dta_train.csv')
|
1202 |
score = 'CI'
|
1203 |
|
|
|
1264 |
|
1265 |
def identify_recommend_model(smiles, task):
|
1266 |
task = TASK_MAP[task]
|
1267 |
+
if task == 'DTI':
|
1268 |
train = pd.read_csv('data/benchmarks/all_families_reduced_dti_train.csv')
|
1269 |
score = 'AUROC'
|
1270 |
+
elif task == 'DTA':
|
1271 |
train = pd.read_csv('data/benchmarks/all_families_reduced_dta_train.csv')
|
1272 |
score = 'CI'
|
1273 |
if smiles not in train['X1']:
|