Spaces:
Sleeping
Sleeping
Update deepscreen/data/dti.py
Browse files- deepscreen/data/dti.py +21 -17
deepscreen/data/dti.py
CHANGED
@@ -6,7 +6,9 @@ from typing import Any, Dict, Optional, Sequence, Union, Literal
|
|
6 |
|
7 |
from lightning import LightningDataModule
|
8 |
import pandas as pd
|
9 |
-
import
|
|
|
|
|
10 |
from sklearn.preprocessing import LabelEncoder
|
11 |
from torch.utils.data import Dataset, DataLoader
|
12 |
|
@@ -14,6 +16,7 @@ from deepscreen.data.utils import label_transform, collate_fn, SafeBatchSampler
|
|
14 |
from deepscreen.utils import get_logger
|
15 |
|
16 |
log = get_logger(__name__)
|
|
|
17 |
|
18 |
SMILES_PAT = r"[^A-Za-z0-9=#:+\-\[\]<>()/\\@%,.*]"
|
19 |
FASTA_PAT = r"[^A-Z*\-]"
|
@@ -33,14 +36,12 @@ def validate_seq_str(seq, regex):
|
|
33 |
# TODO: save a list of corrupted records
|
34 |
|
35 |
def rdkit_canonicalize(smiles):
|
36 |
-
from rdkit import Chem
|
37 |
try:
|
38 |
mol = Chem.MolFromSmiles(smiles)
|
39 |
-
|
40 |
-
return cano_smiles
|
41 |
except Exception as e:
|
42 |
log.warning(f'Failed to canonicalize SMILES using RDKIT due to {str(e)}. Returning original SMILES: {smiles}')
|
43 |
-
|
44 |
|
45 |
|
46 |
class DTIDataset(Dataset):
|
@@ -85,6 +86,12 @@ class DTIDataset(Dataset):
|
|
85 |
# Forward-fill all non-label columns
|
86 |
df.loc[:, df.columns != 'Y'] = df.loc[:, df.columns != 'Y'].ffill(axis=0)
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
# TODO potentially allow running through the whole data validation process
|
89 |
# error = False
|
90 |
|
@@ -93,9 +100,9 @@ class DTIDataset(Dataset):
|
|
93 |
# TODO: check sklearn.utils.multiclass.check_classification_targets
|
94 |
match task:
|
95 |
case 'regression':
|
96 |
-
assert all(df['Y'].
|
97 |
f"""`Y` must be numeric for `regression` task,
|
98 |
-
but it has {set(df['Y'].
|
99 |
|
100 |
case 'binary':
|
101 |
if all(df['Y'].isin([0, 1])):
|
@@ -112,7 +119,7 @@ class DTIDataset(Dataset):
|
|
112 |
case 'multiclass':
|
113 |
assert num_classes >= 3, f'`num_classes` for `task=multiclass` must be at least 3.'
|
114 |
|
115 |
-
if all(df['Y'].
|
116 |
assert not thresholds, \
|
117 |
f"""`Y` is already non-negative integers for
|
118 |
`multiclass` (classification) `task`, but still got `thresholds` ({thresholds}).
|
@@ -140,9 +147,9 @@ class DTIDataset(Dataset):
|
|
140 |
match task:
|
141 |
case 'regression':
|
142 |
df['Y'] = df['Y'].astype('float32')
|
143 |
-
assert all(df['Y'].
|
144 |
f"""`Y` must be numeric for `regression` task,
|
145 |
-
but after transformation it still has {set(df['Y'].
|
146 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
147 |
# TODO print err idx instead
|
148 |
case 'binary':
|
@@ -154,7 +161,7 @@ class DTIDataset(Dataset):
|
|
154 |
# TODO print err idx instead
|
155 |
case 'multiclass':
|
156 |
df['Y'] = df['Y'].astype('int')
|
157 |
-
assert all(df['Y'].
|
158 |
f"""Y must be non-negative integers for `task=multiclass`
|
159 |
but after transformation it still has {pd.unique(df['Y'])}.
|
160 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
@@ -166,16 +173,14 @@ class DTIDataset(Dataset):
|
|
166 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
167 |
|
168 |
log.info("Validating SMILES (`X1`)...")
|
169 |
-
df['X1_ERR'] = df['X1'].
|
170 |
-
desc="Validating SMILES...").apply(validate_seq_str, regex=SMILES_PAT)
|
171 |
if not df['X1_ERR'].isna().all():
|
172 |
raise Exception(f"Encountered invalid SMILES:\n{df[~df['X1_ERR'].isna()][['X1', 'X1_ERR']]}")
|
173 |
-
df['X1^'] = df['X1'].
|
174 |
|
175 |
log.info("Validating FASTA (`X2`)...")
|
176 |
df['X2'] = df['X2'].str.upper()
|
177 |
-
df['X2_ERR'] = df['X2'].
|
178 |
-
desc="Validating FASTA...").apply(validate_seq_str, regex=FASTA_PAT)
|
179 |
if not df['X2_ERR'].isna().all():
|
180 |
raise Exception(f"Encountered invalid FASTA:\n{df[~df['X2_ERR'].isna()][['X2', 'X2_ERR']]}")
|
181 |
|
@@ -425,4 +430,3 @@ class DTIDataModule(LightningDataModule):
|
|
425 |
def load_state_dict(self, state_dict: Dict[str, Any]):
|
426 |
"""Things to do when loading checkpoint."""
|
427 |
pass
|
428 |
-
|
|
|
6 |
|
7 |
from lightning import LightningDataModule
|
8 |
import pandas as pd
|
9 |
+
from pandarallel import pandarallel
|
10 |
+
from rdkit import Chem
|
11 |
+
#import swifter
|
12 |
from sklearn.preprocessing import LabelEncoder
|
13 |
from torch.utils.data import Dataset, DataLoader
|
14 |
|
|
|
16 |
from deepscreen.utils import get_logger
|
17 |
|
18 |
log = get_logger(__name__)
|
19 |
+
pandarallel.initialize(progress_bar=True)
|
20 |
|
21 |
SMILES_PAT = r"[^A-Za-z0-9=#:+\-\[\]<>()/\\@%,.*]"
|
22 |
FASTA_PAT = r"[^A-Z*\-]"
|
|
|
36 |
# TODO: save a list of corrupted records
|
37 |
|
38 |
def rdkit_canonicalize(smiles):
|
|
|
39 |
try:
|
40 |
mol = Chem.MolFromSmiles(smiles)
|
41 |
+
smiles = Chem.MolToSmiles(mol)
|
|
|
42 |
except Exception as e:
|
43 |
log.warning(f'Failed to canonicalize SMILES using RDKIT due to {str(e)}. Returning original SMILES: {smiles}')
|
44 |
+
return smiles
|
45 |
|
46 |
|
47 |
class DTIDataset(Dataset):
|
|
|
86 |
# Forward-fill all non-label columns
|
87 |
df.loc[:, df.columns != 'Y'] = df.loc[:, df.columns != 'Y'].ffill(axis=0)
|
88 |
|
89 |
+
# Fill NAs in string cols with an empty string to prevent wrong type inference by pytorch collator
|
90 |
+
for col in df.columns:
|
91 |
+
if df[col].dtype == 'object':
|
92 |
+
df[col] = df[col].fillna('')
|
93 |
+
|
94 |
+
|
95 |
# TODO potentially allow running through the whole data validation process
|
96 |
# error = False
|
97 |
|
|
|
100 |
# TODO: check sklearn.utils.multiclass.check_classification_targets
|
101 |
match task:
|
102 |
case 'regression':
|
103 |
+
assert all(df['Y'].parallel_apply(lambda x: isinstance(x, Number))), \
|
104 |
f"""`Y` must be numeric for `regression` task,
|
105 |
+
but it has {set(df['Y'].parallel_apply(type))}."""
|
106 |
|
107 |
case 'binary':
|
108 |
if all(df['Y'].isin([0, 1])):
|
|
|
119 |
case 'multiclass':
|
120 |
assert num_classes >= 3, f'`num_classes` for `task=multiclass` must be at least 3.'
|
121 |
|
122 |
+
if all(df['Y'].parallel_apply(lambda x: x.is_integer() and x >= 0)):
|
123 |
assert not thresholds, \
|
124 |
f"""`Y` is already non-negative integers for
|
125 |
`multiclass` (classification) `task`, but still got `thresholds` ({thresholds}).
|
|
|
147 |
match task:
|
148 |
case 'regression':
|
149 |
df['Y'] = df['Y'].astype('float32')
|
150 |
+
assert all(df['Y'].parallel_apply(lambda x: isinstance(x, Number))), \
|
151 |
f"""`Y` must be numeric for `regression` task,
|
152 |
+
but after transformation it still has {set(df['Y'].parallel_apply(type))}.
|
153 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
154 |
# TODO print err idx instead
|
155 |
case 'binary':
|
|
|
161 |
# TODO print err idx instead
|
162 |
case 'multiclass':
|
163 |
df['Y'] = df['Y'].astype('int')
|
164 |
+
assert all(df['Y'].parallel_apply(lambda x: x.is_integer() and x >= 0)), \
|
165 |
f"""Y must be non-negative integers for `task=multiclass`
|
166 |
but after transformation it still has {pd.unique(df['Y'])}.
|
167 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
|
|
173 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
174 |
|
175 |
log.info("Validating SMILES (`X1`)...")
|
176 |
+
df['X1_ERR'] = df['X1'].parallel_apply(validate_seq_str, regex=SMILES_PAT)
|
|
|
177 |
if not df['X1_ERR'].isna().all():
|
178 |
raise Exception(f"Encountered invalid SMILES:\n{df[~df['X1_ERR'].isna()][['X1', 'X1_ERR']]}")
|
179 |
+
df['X1^'] = df['X1'].parallel_apply(rdkit_canonicalize)
|
180 |
|
181 |
log.info("Validating FASTA (`X2`)...")
|
182 |
df['X2'] = df['X2'].str.upper()
|
183 |
+
df['X2_ERR'] = df['X2'].parallel_apply(validate_seq_str, regex=FASTA_PAT)
|
|
|
184 |
if not df['X2_ERR'].isna().all():
|
185 |
raise Exception(f"Encountered invalid FASTA:\n{df[~df['X2_ERR'].isna()][['X2', 'X2_ERR']]}")
|
186 |
|
|
|
430 |
def load_state_dict(self, state_dict: Dict[str, Any]):
|
431 |
"""Things to do when loading checkpoint."""
|
432 |
pass
|
|