Spaces:
Sleeping
Sleeping
Delete deepscreen/data/single_entity.py
Browse files- deepscreen/data/single_entity.py +0 -195
deepscreen/data/single_entity.py
DELETED
@@ -1,195 +0,0 @@
|
|
1 |
-
# from itertools import product
|
2 |
-
from numbers import Number
|
3 |
-
from pathlib import Path
|
4 |
-
from typing import Any, Dict, Optional, Sequence, Union, Literal
|
5 |
-
|
6 |
-
# import numpy as np
|
7 |
-
import pandas as pd
|
8 |
-
from lightning import LightningDataModule
|
9 |
-
from sklearn.base import TransformerMixin
|
10 |
-
from torch.utils.data import Dataset, DataLoader, random_split
|
11 |
-
|
12 |
-
from deepscreen.data.utils.dataset import SingleEntitySingleTargetDataset, BaseEntityDataset
|
13 |
-
from deepscreen.data.utils.label import label_transform
|
14 |
-
from deepscreen.data.utils.collator import collate_fn
|
15 |
-
from deepscreen.data.utils.sampler import SafeBatchSampler
|
16 |
-
|
17 |
-
|
18 |
-
class EntityDataModule(LightningDataModule):
|
19 |
-
"""
|
20 |
-
DTI DataModule
|
21 |
-
|
22 |
-
A DataModule implements 5 key methods:
|
23 |
-
|
24 |
-
def prepare_data(self):
|
25 |
-
# things to do on 1 GPU/TPU (not on every GPU/TPU in DDP)
|
26 |
-
# download data, pre-process, split, save to disk, etc.
|
27 |
-
def setup(self, stage):
|
28 |
-
# things to do on every process in DDP
|
29 |
-
# load data, set variables, etc.
|
30 |
-
def train_dataloader(self):
|
31 |
-
# return train dataloader
|
32 |
-
def val_dataloader(self):
|
33 |
-
# return validation dataloader
|
34 |
-
def test_dataloader(self):
|
35 |
-
# return test dataloader
|
36 |
-
def teardown(self):
|
37 |
-
# called on every process in DDP
|
38 |
-
# clean up after fit or test
|
39 |
-
|
40 |
-
This allows you to share a full dataset without explaining how to download,
|
41 |
-
split, transform and process the data.
|
42 |
-
|
43 |
-
Read the docs:
|
44 |
-
https://pytorch-lightning.readthedocs.io/en/latest/extensions/datamodules.html
|
45 |
-
"""
|
46 |
-
|
47 |
-
def __init__(
|
48 |
-
self,
|
49 |
-
dataset: type[BaseEntityDataset],
|
50 |
-
task: Literal['regression', 'binary', 'multiclass'],
|
51 |
-
n_classes: Optional[int],
|
52 |
-
train: bool,
|
53 |
-
batch_size: int,
|
54 |
-
num_workers: int = 0,
|
55 |
-
thresholds: Optional[Union[Number, Sequence[Number]]] = None,
|
56 |
-
pin_memory: bool = False,
|
57 |
-
data_dir: str = "data/",
|
58 |
-
data_file: Optional[str] = None,
|
59 |
-
train_val_test_split: Optional[Sequence[Number], Sequence[str]] = None,
|
60 |
-
split: Optional[callable] = random_split,
|
61 |
-
):
|
62 |
-
super().__init__()
|
63 |
-
data_path = Path(data_dir) / data_file
|
64 |
-
# this line allows to access init params with 'self.hparams' attribute
|
65 |
-
# also ensures init params will be stored in ckpt
|
66 |
-
self.save_hyperparameters(logger=False)
|
67 |
-
|
68 |
-
# data processing
|
69 |
-
self.split = split
|
70 |
-
|
71 |
-
if train:
|
72 |
-
if all([data_file, split]):
|
73 |
-
if all(isinstance(split, Number) for split in train_val_test_split):
|
74 |
-
pass
|
75 |
-
else:
|
76 |
-
raise ValueError('`train_val_test_split` must be a sequence of 3 numbers '
|
77 |
-
'(float for percentages and int for sample numbers) if '
|
78 |
-
'`data_file` and `split` have been specified.')
|
79 |
-
elif all(isinstance(split, str) for split in train_val_test_split) and not any([data_file, split]):
|
80 |
-
self.train_data = dataset(dataset_path=str(Path(data_dir) / train_val_test_split[0]))
|
81 |
-
self.val_data = dataset(dataset_path=str(Path(data_dir) / train_val_test_split[1]))
|
82 |
-
self.test_data = dataset(dataset_path=str(Path(data_dir) / train_val_test_split[2]))
|
83 |
-
else:
|
84 |
-
raise ValueError('For training (train=True), you must specify either '
|
85 |
-
'`dataset_name` and `split` with `train_val_test_split` of 3 numbers or '
|
86 |
-
'solely `train_val_test_split` of 3 data file names.')
|
87 |
-
else:
|
88 |
-
if data_file and not any([split, train_val_test_split]):
|
89 |
-
self.test_data = self.predict_data = dataset(dataset_path=str(Path(data_dir) / data_file))
|
90 |
-
else:
|
91 |
-
raise ValueError("For testing/predicting (train=False), you must specify only `data_file` without "
|
92 |
-
"`train_val_test_split` or `split`")
|
93 |
-
|
94 |
-
def prepare_data(self):
|
95 |
-
"""
|
96 |
-
Download data if needed.
|
97 |
-
Do not use it to assign state (e.g., self.x = x).
|
98 |
-
"""
|
99 |
-
|
100 |
-
def setup(self, stage: Optional[str] = None, encoding: str = None):
|
101 |
-
"""
|
102 |
-
Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
|
103 |
-
This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
|
104 |
-
careful not to execute data splitting twice.
|
105 |
-
"""
|
106 |
-
# load and split datasets only if not loaded in initialization
|
107 |
-
if not any([self.data_train, self.data_val, self.data_test, self.data_predict]):
|
108 |
-
dataset = SingleEntitySingleTargetDataset(
|
109 |
-
task=self.hparams.task,
|
110 |
-
n_classes=self.hparams.n_classes,
|
111 |
-
dataset_path=Path(self.hparams.data_dir) / self.hparams.dataset_name,
|
112 |
-
transformer=self.hparams.transformer,
|
113 |
-
featurizer=self.hparams.featurizer,
|
114 |
-
thresholds=self.hparams.thresholds,
|
115 |
-
)
|
116 |
-
|
117 |
-
if self.hparams.train:
|
118 |
-
self.data_train, self.data_val, self.data_test = self.split(
|
119 |
-
dataset=dataset,
|
120 |
-
lengths=self.hparams.train_val_test_split
|
121 |
-
)
|
122 |
-
else:
|
123 |
-
self.data_test = self.data_predict = dataset
|
124 |
-
|
125 |
-
def train_dataloader(self):
|
126 |
-
return DataLoader(
|
127 |
-
dataset=self.data_train,
|
128 |
-
batch_sampler=SafeBatchSampler(
|
129 |
-
data_source=self.data_train,
|
130 |
-
batch_size=self.hparams.batch_size,
|
131 |
-
shuffle=True),
|
132 |
-
# batch_size=self.hparams.batch_size,
|
133 |
-
# shuffle=True,
|
134 |
-
num_workers=self.hparams.num_workers,
|
135 |
-
pin_memory=self.hparams.pin_memory,
|
136 |
-
collate_fn=collate_fn,
|
137 |
-
persistent_workers=True if self.hparams.num_workers > 0 else False
|
138 |
-
)
|
139 |
-
|
140 |
-
def val_dataloader(self):
|
141 |
-
return DataLoader(
|
142 |
-
dataset=self.data_val,
|
143 |
-
batch_sampler=SafeBatchSampler(
|
144 |
-
data_source=self.data_val,
|
145 |
-
batch_size=self.hparams.batch_size,
|
146 |
-
shuffle=False),
|
147 |
-
# batch_size=self.hparams.batch_size,
|
148 |
-
# shuffle=False,
|
149 |
-
num_workers=self.hparams.num_workers,
|
150 |
-
pin_memory=self.hparams.pin_memory,
|
151 |
-
collate_fn=collate_fn,
|
152 |
-
persistent_workers=True if self.hparams.num_workers > 0 else False
|
153 |
-
)
|
154 |
-
|
155 |
-
def test_dataloader(self):
|
156 |
-
return DataLoader(
|
157 |
-
dataset=self.data_test,
|
158 |
-
batch_sampler=SafeBatchSampler(
|
159 |
-
data_source=self.data_test,
|
160 |
-
batch_size=self.hparams.batch_size,
|
161 |
-
shuffle=False),
|
162 |
-
# batch_size=self.hparams.batch_size,
|
163 |
-
# shuffle=False,
|
164 |
-
num_workers=self.hparams.num_workers,
|
165 |
-
pin_memory=self.hparams.pin_memory,
|
166 |
-
collate_fn=collate_fn,
|
167 |
-
persistent_workers=True if self.hparams.num_workers > 0 else False
|
168 |
-
)
|
169 |
-
|
170 |
-
def predict_dataloader(self):
|
171 |
-
return DataLoader(
|
172 |
-
dataset=self.data_predict,
|
173 |
-
batch_sampler=SafeBatchSampler(
|
174 |
-
data_source=self.data_predict,
|
175 |
-
batch_size=self.hparams.batch_size,
|
176 |
-
shuffle=False),
|
177 |
-
# batch_size=self.hparams.batch_size,
|
178 |
-
# shuffle=False,
|
179 |
-
num_workers=self.hparams.num_workers,
|
180 |
-
pin_memory=self.hparams.pin_memory,
|
181 |
-
collate_fn=collate_fn,
|
182 |
-
persistent_workers=True if self.hparams.num_workers > 0 else False
|
183 |
-
)
|
184 |
-
|
185 |
-
def teardown(self, stage: Optional[str] = None):
|
186 |
-
"""Clean up after fit or test."""
|
187 |
-
pass
|
188 |
-
|
189 |
-
def state_dict(self):
|
190 |
-
"""Extra things to save to checkpoint."""
|
191 |
-
return {}
|
192 |
-
|
193 |
-
def load_state_dict(self, state_dict: Dict[str, Any]):
|
194 |
-
"""Things to do when loading checkpoint."""
|
195 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|