Spaces:
Sleeping
Sleeping
Delete deepscreen/data/dti.py.bak
Browse files- deepscreen/data/dti.py.bak +0 -369
deepscreen/data/dti.py.bak
DELETED
@@ -1,369 +0,0 @@
|
|
1 |
-
from functools import partial
|
2 |
-
from numbers import Number
|
3 |
-
from pathlib import Path
|
4 |
-
from typing import Any, Dict, Optional, Sequence, Union, Literal
|
5 |
-
|
6 |
-
from lightning import LightningDataModule
|
7 |
-
import pandas as pd
|
8 |
-
from sklearn.preprocessing import LabelEncoder
|
9 |
-
from torch.utils.data import Dataset, DataLoader
|
10 |
-
|
11 |
-
from deepscreen.data.utils import label_transform, collate_fn, SafeBatchSampler
|
12 |
-
from deepscreen.utils import get_logger
|
13 |
-
|
14 |
-
log = get_logger(__name__)
|
15 |
-
|
16 |
-
|
17 |
-
# TODO: save a list of corrupted records
|
18 |
-
|
19 |
-
|
20 |
-
class DTIDataset(Dataset):
|
21 |
-
def __init__(
|
22 |
-
self,
|
23 |
-
task: Literal['regression', 'binary', 'multiclass'],
|
24 |
-
n_class: Optional[int],
|
25 |
-
data_path: str | Path,
|
26 |
-
drug_featurizer: callable,
|
27 |
-
protein_featurizer: callable,
|
28 |
-
thresholds: Optional[Union[Number, Sequence[Number]]] = None,
|
29 |
-
discard_intermediate: Optional[bool] = False,
|
30 |
-
):
|
31 |
-
df = pd.read_csv(
|
32 |
-
data_path,
|
33 |
-
engine='python',
|
34 |
-
header=0,
|
35 |
-
usecols=lambda x: x in ['X1', 'ID1', 'X2', 'ID2', 'Y', 'U'],
|
36 |
-
dtype={
|
37 |
-
'X1': 'str',
|
38 |
-
'ID1': 'str',
|
39 |
-
'X2': 'str',
|
40 |
-
'ID2': 'str',
|
41 |
-
'Y': 'float32',
|
42 |
-
'U': 'str',
|
43 |
-
},
|
44 |
-
)
|
45 |
-
# Read the whole data table
|
46 |
-
|
47 |
-
# if 'ID1' in df:
|
48 |
-
# self.x1_to_id1 = dict(zip(df['X1'], df['ID1']))
|
49 |
-
# if 'ID2' in df:
|
50 |
-
# self.x2_to_id2 = dict(zip(df['X2'], df['ID2']))
|
51 |
-
# self.id2_to_indexes = dict(zip(df['ID2'], range(len(df['ID2']))))
|
52 |
-
# self.x2_to_indexes = dict(zip(df['X2'], range(len(df['X2']))))
|
53 |
-
|
54 |
-
# # train and eval mode data processing (fully labelled)
|
55 |
-
# if 'Y' in df.columns and df['Y'].notnull().all():
|
56 |
-
log.info(f"Processing data file: {data_path}")
|
57 |
-
|
58 |
-
# Forward-fill all non-label columns
|
59 |
-
df.loc[:, df.columns != 'Y'] = df.loc[:, df.columns != 'Y'].ffill(axis=0)
|
60 |
-
|
61 |
-
if 'Y' in df:
|
62 |
-
log.info(f"Performing pre-transformation target validation.")
|
63 |
-
# TODO: check sklearn.utils.multiclass.check_classification_targets
|
64 |
-
match task:
|
65 |
-
case 'regression':
|
66 |
-
assert all(df['Y'].apply(lambda x: isinstance(x, Number))), \
|
67 |
-
f"""`Y` must be numeric for `regression` task,
|
68 |
-
but it has {set(df['Y'].apply(type))}."""
|
69 |
-
|
70 |
-
case 'binary':
|
71 |
-
if all(df['Y'].isin([0, 1])):
|
72 |
-
assert not thresholds, \
|
73 |
-
f"""`Y` is already 0 or 1 for `binary` (classification) `task`,
|
74 |
-
but still got `thresholds` {thresholds}.
|
75 |
-
Double check your choices of `task` and `thresholds` and records in the `Y` column."""
|
76 |
-
else:
|
77 |
-
assert thresholds, \
|
78 |
-
f"""`Y` must be 0 or 1 for `binary` (classification) `task`,
|
79 |
-
but it has {pd.unique(df['Y'])}.
|
80 |
-
You must set `thresholds` to discretize continuous labels."""
|
81 |
-
|
82 |
-
case 'multiclass':
|
83 |
-
assert n_class >= 3, f'`n_class` for `multiclass` (classification) `task` must be at least 3.'
|
84 |
-
|
85 |
-
if all(df['Y'].apply(lambda x: x.is_integer() and x >= 0)):
|
86 |
-
assert not thresholds, \
|
87 |
-
f"""`Y` is already non-negative integers for
|
88 |
-
`multiclass` (classification) `task`, but still got `thresholds` {thresholds}.
|
89 |
-
Double check your choice of `task`, `thresholds` and records in the `Y` column."""
|
90 |
-
else:
|
91 |
-
assert thresholds, \
|
92 |
-
f"""`Y` must be non-negative integers for
|
93 |
-
`multiclass` (classification) 'task',but it has {pd.unique(df['Y'])}.
|
94 |
-
You must set `thresholds` to discretize continuous labels."""
|
95 |
-
|
96 |
-
if 'U' in df.columns:
|
97 |
-
units = df['U']
|
98 |
-
else:
|
99 |
-
units = None
|
100 |
-
log.warning("Units ('U') not in the data table. "
|
101 |
-
"Assuming all labels to be discrete or in p-scale (-log10[M]).")
|
102 |
-
|
103 |
-
# Transform labels
|
104 |
-
df['Y'] = label_transform(labels=df['Y'], units=units, thresholds=thresholds,
|
105 |
-
discard_intermediate=discard_intermediate)
|
106 |
-
|
107 |
-
# Filter out rows with a NaN in Y (missing values)
|
108 |
-
df.dropna(subset=['Y'], inplace=True)
|
109 |
-
|
110 |
-
log.info(f"Performing post-transformation target validation.")
|
111 |
-
match task:
|
112 |
-
case 'regression':
|
113 |
-
df['Y'] = df['Y'].astype('float32')
|
114 |
-
assert all(df['Y'].apply(lambda x: isinstance(x, Number))), \
|
115 |
-
f"""`Y` must be numeric for `regression` task,
|
116 |
-
but after transformation it still has {set(df['Y'].apply(type))}.
|
117 |
-
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
118 |
-
|
119 |
-
case 'binary':
|
120 |
-
df['Y'] = df['Y'].astype('int')
|
121 |
-
assert all(df['Y'].isin([0, 1])), \
|
122 |
-
f"""`Y` must be 0 or 1 for `binary` (classification) `task`, "
|
123 |
-
but after transformation it still has {pd.unique(df['Y'])}.
|
124 |
-
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
125 |
-
|
126 |
-
case 'multiclass':
|
127 |
-
df['Y'] = df['Y'].astype('int')
|
128 |
-
assert all(df['Y'].apply(lambda x: x.is_integer() and x >= 0)), \
|
129 |
-
f"""Y must be non-negative integers for task `multiclass` (classification)
|
130 |
-
but after transformation it still has {pd.unique(df['Y'])}.
|
131 |
-
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
132 |
-
|
133 |
-
target_n_unique = df['Y'].nunique()
|
134 |
-
assert target_n_unique == n_class, \
|
135 |
-
f"""You have set `n_class` for `multiclass` (classification) `task` to {n_class},
|
136 |
-
but after transformation Y still has {target_n_unique} unique labels.
|
137 |
-
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
138 |
-
|
139 |
-
# Indexed protein/FASTA for retrieval metrics
|
140 |
-
df['IDX'] = LabelEncoder().fit_transform(df['X2'])
|
141 |
-
|
142 |
-
self.df = df
|
143 |
-
self.drug_featurizer = drug_featurizer if drug_featurizer is not None else (lambda x: x)
|
144 |
-
self.protein_featurizer = protein_featurizer if protein_featurizer is not None else (lambda x: x)
|
145 |
-
|
146 |
-
def __len__(self):
|
147 |
-
return len(self.df.index)
|
148 |
-
|
149 |
-
def __getitem__(self, i):
|
150 |
-
sample = self.df.loc[i]
|
151 |
-
return {
|
152 |
-
'N': i,
|
153 |
-
'X1': self.drug_featurizer(sample['X1']),
|
154 |
-
'ID1': sample.get('ID1', sample['X1']),
|
155 |
-
'X2': self.protein_featurizer(sample['X2']),
|
156 |
-
'ID2': sample.get('ID2', sample['X2']),
|
157 |
-
'Y': sample.get('Y'),
|
158 |
-
'IDX': sample['IDX'],
|
159 |
-
}
|
160 |
-
|
161 |
-
|
162 |
-
class DTIDataModule(LightningDataModule):
|
163 |
-
"""
|
164 |
-
DTI DataModule
|
165 |
-
|
166 |
-
A DataModule implements 5 key methods:
|
167 |
-
|
168 |
-
def prepare_data(self):
|
169 |
-
# things to do on 1 GPU/TPU (not on every GPU/TPU in DDP)
|
170 |
-
# download data, pre-process, split, save to disk, etc.
|
171 |
-
def setup(self, stage):
|
172 |
-
# things to do on every process in DDP
|
173 |
-
# load data, set variables, etc.
|
174 |
-
def train_dataloader(self):
|
175 |
-
# return train dataloader
|
176 |
-
def val_dataloader(self):
|
177 |
-
# return validation dataloader
|
178 |
-
def test_dataloader(self):
|
179 |
-
# return test dataloader
|
180 |
-
def teardown(self):
|
181 |
-
# called on every process in DDP
|
182 |
-
# clean up after fit or test
|
183 |
-
|
184 |
-
This allows you to share a full dataset without explaining how to download,
|
185 |
-
split, transform and process the data.
|
186 |
-
|
187 |
-
Read the docs:
|
188 |
-
https://pytorch-lightning.readthedocs.io/en/latest/extensions/datamodules.html
|
189 |
-
"""
|
190 |
-
|
191 |
-
def __init__(
|
192 |
-
self,
|
193 |
-
task: Literal['regression', 'binary', 'multiclass'],
|
194 |
-
n_class: Optional[int],
|
195 |
-
batch_size: int,
|
196 |
-
# train: bool,
|
197 |
-
drug_featurizer: callable,
|
198 |
-
protein_featurizer: callable,
|
199 |
-
collator: callable = collate_fn,
|
200 |
-
data_dir: str = "data/",
|
201 |
-
data_file: Optional[str] = None,
|
202 |
-
train_val_test_split: Optional[Union[Sequence[Number | str]]] = None,
|
203 |
-
split: Optional[callable] = None,
|
204 |
-
thresholds: Optional[Union[Number, Sequence[Number]]] = None,
|
205 |
-
discard_intermediate: Optional[bool] = False,
|
206 |
-
num_workers: int = 0,
|
207 |
-
pin_memory: bool = False,
|
208 |
-
):
|
209 |
-
super().__init__()
|
210 |
-
|
211 |
-
self.train_data: Optional[Dataset] = None
|
212 |
-
self.val_data: Optional[Dataset] = None
|
213 |
-
self.test_data: Optional[Dataset] = None
|
214 |
-
self.predict_data: Optional[Dataset] = None
|
215 |
-
self.split = split
|
216 |
-
self.collator = collator
|
217 |
-
self.dataset = partial(
|
218 |
-
DTIDataset,
|
219 |
-
task=task,
|
220 |
-
n_class=n_class,
|
221 |
-
drug_featurizer=drug_featurizer,
|
222 |
-
protein_featurizer=protein_featurizer,
|
223 |
-
thresholds=thresholds,
|
224 |
-
discard_intermediate=discard_intermediate
|
225 |
-
)
|
226 |
-
|
227 |
-
if train_val_test_split:
|
228 |
-
# TODO test behavior for trainer.test and predict when this is passed
|
229 |
-
if len(train_val_test_split) not in [2, 3]:
|
230 |
-
raise ValueError('Length of `train_val_test_split` must be 2 (for training without testing) or 3.')
|
231 |
-
if all([data_file, split]):
|
232 |
-
if all(isinstance(split, Number) for split in train_val_test_split):
|
233 |
-
pass
|
234 |
-
else:
|
235 |
-
raise ValueError('`train_val_test_split` must be a sequence numbers '
|
236 |
-
'(float for percentages and int for sample numbers) '
|
237 |
-
'if both `data_file` and `split` have been specified.')
|
238 |
-
elif all(isinstance(split, str) for split in train_val_test_split) and not any([data_file, split]):
|
239 |
-
split_paths = []
|
240 |
-
for split in train_val_test_split:
|
241 |
-
split = Path(split)
|
242 |
-
if not split.is_absolute():
|
243 |
-
split = Path(data_dir, split)
|
244 |
-
split_paths.append(split)
|
245 |
-
|
246 |
-
self.train_data = self.dataset(data_path=split_paths[0])
|
247 |
-
self.val_data = self.dataset(data_path=split_paths[1])
|
248 |
-
if len(train_val_test_split) == 3:
|
249 |
-
self.test_data = self.dataset(data_path=split_paths[2])
|
250 |
-
else:
|
251 |
-
raise ValueError('For training, you must specify either `data_file`, `split`, '
|
252 |
-
'and `train_val_test_split` as a sequence of numbers or '
|
253 |
-
'solely `train_val_test_split` as a sequence of data file paths.')
|
254 |
-
|
255 |
-
elif data_file and not any([split, train_val_test_split]):
|
256 |
-
data_file = Path(data_file)
|
257 |
-
if not data_file.is_absolute():
|
258 |
-
data_file = Path(data_dir, data_file)
|
259 |
-
self.test_data = self.predict_data = self.dataset(data_path=data_file)
|
260 |
-
else:
|
261 |
-
raise ValueError("For training, you must specify `train_val_test_split`. "
|
262 |
-
"For testing/predicting, you must specify only `data_file` without "
|
263 |
-
"`train_val_test_split` or `split`.")
|
264 |
-
|
265 |
-
# this line allows to access init params with 'self.hparams' attribute
|
266 |
-
# also ensures init params will be stored in ckpt
|
267 |
-
self.save_hyperparameters(logger=False) # ignore=['split']
|
268 |
-
|
269 |
-
def prepare_data(self):
|
270 |
-
"""
|
271 |
-
Download data if needed.
|
272 |
-
Do not use it to assign state (e.g., self.x = x).
|
273 |
-
"""
|
274 |
-
|
275 |
-
def setup(self, stage: Optional[str] = None, encoding: str = None):
|
276 |
-
"""
|
277 |
-
Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
|
278 |
-
This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
|
279 |
-
careful not to execute data splitting twice.
|
280 |
-
"""
|
281 |
-
# TODO test SafeBatchSampler (which skips samples with any None without introducing variable batch size)
|
282 |
-
# load and split datasets only if not loaded in initialization
|
283 |
-
if not any([self.train_data, self.test_data, self.val_data, self.predict_data]):
|
284 |
-
self.train_data, self.val_data, self.test_data = self.split(
|
285 |
-
dataset=self.dataset(data_path=Path(self.hparams.data_dir, self.hparams.data_file)),
|
286 |
-
lengths=self.hparams.train_val_test_split
|
287 |
-
)
|
288 |
-
|
289 |
-
def train_dataloader(self):
|
290 |
-
return DataLoader(
|
291 |
-
dataset=self.train_data,
|
292 |
-
batch_sampler=SafeBatchSampler(
|
293 |
-
data_source=self.train_data,
|
294 |
-
batch_size=self.hparams.batch_size,
|
295 |
-
# Dropping the last batch prevents problems caused by variable batch sizes in training, e.g.,
|
296 |
-
# batch_size=1 in BatchNorm, and shuffling ensures the model be trained on all samples over epochs.
|
297 |
-
drop_last=True,
|
298 |
-
shuffle=True,
|
299 |
-
),
|
300 |
-
# batch_size=self.hparams.batch_size,
|
301 |
-
# shuffle=True,
|
302 |
-
num_workers=self.hparams.num_workers,
|
303 |
-
pin_memory=self.hparams.pin_memory,
|
304 |
-
collate_fn=self.collator,
|
305 |
-
persistent_workers=True if self.hparams.num_workers > 0 else False
|
306 |
-
)
|
307 |
-
|
308 |
-
def val_dataloader(self):
|
309 |
-
return DataLoader(
|
310 |
-
dataset=self.val_data,
|
311 |
-
batch_sampler=SafeBatchSampler(
|
312 |
-
data_source=self.val_data,
|
313 |
-
batch_size=self.hparams.batch_size,
|
314 |
-
drop_last=False,
|
315 |
-
shuffle=False
|
316 |
-
),
|
317 |
-
# batch_size=self.hparams.batch_size,
|
318 |
-
# shuffle=False,
|
319 |
-
num_workers=self.hparams.num_workers,
|
320 |
-
pin_memory=self.hparams.pin_memory,
|
321 |
-
collate_fn=self.collator,
|
322 |
-
persistent_workers=True if self.hparams.num_workers > 0 else False
|
323 |
-
)
|
324 |
-
|
325 |
-
def test_dataloader(self):
|
326 |
-
return DataLoader(
|
327 |
-
dataset=self.test_data,
|
328 |
-
batch_sampler=SafeBatchSampler(
|
329 |
-
data_source=self.test_data,
|
330 |
-
batch_size=self.hparams.batch_size,
|
331 |
-
drop_last=False,
|
332 |
-
shuffle=False
|
333 |
-
),
|
334 |
-
# batch_size=self.hparams.batch_size,
|
335 |
-
# shuffle=False,
|
336 |
-
num_workers=self.hparams.num_workers,
|
337 |
-
pin_memory=self.hparams.pin_memory,
|
338 |
-
collate_fn=self.collator,
|
339 |
-
persistent_workers=True if self.hparams.num_workers > 0 else False
|
340 |
-
)
|
341 |
-
|
342 |
-
def predict_dataloader(self):
|
343 |
-
return DataLoader(
|
344 |
-
dataset=self.predict_data,
|
345 |
-
batch_sampler=SafeBatchSampler(
|
346 |
-
data_source=self.predict_data,
|
347 |
-
batch_size=self.hparams.batch_size,
|
348 |
-
drop_last=False,
|
349 |
-
shuffle=False
|
350 |
-
),
|
351 |
-
# batch_size=self.hparams.batch_size,
|
352 |
-
# shuffle=False,
|
353 |
-
num_workers=self.hparams.num_workers,
|
354 |
-
pin_memory=self.hparams.pin_memory,
|
355 |
-
collate_fn=self.collator,
|
356 |
-
persistent_workers=True if self.hparams.num_workers > 0 else False
|
357 |
-
)
|
358 |
-
|
359 |
-
def teardown(self, stage: Optional[str] = None):
|
360 |
-
"""Clean up after fit or test."""
|
361 |
-
pass
|
362 |
-
|
363 |
-
def state_dict(self):
|
364 |
-
"""Extra things to save to checkpoint."""
|
365 |
-
return {}
|
366 |
-
|
367 |
-
def load_state_dict(self, state_dict: Dict[str, Any]):
|
368 |
-
"""Things to do when loading checkpoint."""
|
369 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|