Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
demo = gr.load("Helsinki-NLP/opus-mt-en-es", src="models")
|
4 |
|
5 |
-
demo.
|
|
|
|
1 |
+
import hydra
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
+
from pathlib import Path
|
5 |
+
import sys
|
6 |
+
|
7 |
import gradio as gr
|
8 |
+
import pandas as pd
|
9 |
+
from rdkit import Chem
|
10 |
+
from rdkit.Chem import RDConfig, Descriptors, Lipinski, Crippen
|
11 |
+
|
12 |
+
from deepscreen.predict import predict
|
13 |
+
|
14 |
+
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
|
15 |
+
import sascorer
|
16 |
+
|
17 |
+
pathlib.PosixPath = pathlib.WindowsPath
|
18 |
+
ROOT = Path.cwd()
|
19 |
+
|
20 |
+
# TODO refactor caching with LRU
|
21 |
+
# MOL_MAP = {}
|
22 |
+
# def cached_mol(smiles):
|
23 |
+
# if smiles not in MOL_MAP:
|
24 |
+
# MOL_MAP.update({smiles: Chem.MolFromSmiles(smiles)})
|
25 |
+
# return MOL_MAP.get(smiles)
|
26 |
+
|
27 |
+
|
28 |
+
def sa_score(row):
|
29 |
+
return sascorer.calculateScore(Chem.MolFromSmiles(row['X1']))
|
30 |
+
|
31 |
+
def mw(row):
|
32 |
+
return Chem.Descriptors.MolWt(Chem.MolFromSmiles(row['X1']))
|
33 |
+
|
34 |
+
def hbd(row):
|
35 |
+
return Lipinski.NumHDonors(Chem.MolFromSmiles(row['X1']))
|
36 |
+
|
37 |
+
def hba(row):
|
38 |
+
return Lipinski.NumHAcceptors(Chem.MolFromSmiles(row['X1']))
|
39 |
+
|
40 |
+
def logp(row):
|
41 |
+
return Crippen.MolLogP(Chem.MolFromSmiles(row['X1']))
|
42 |
+
|
43 |
+
SCORE_MAP = {
|
44 |
+
'SAscore': sa_score,
|
45 |
+
'RAscore': None, # https://github.com/reymond-group/RAscore
|
46 |
+
'SCScore': None, # https://pubs.acs.org/doi/10.1021/acs.jcim.7b00622
|
47 |
+
'LogP': logp, # https://www.rdkit.org/docs/source/rdkit.Chem.Crippen.html
|
48 |
+
'MW': mw, # https://www.rdkit.org/docs/source/rdkit.Chem.Descriptors.html
|
49 |
+
'HBD': hbd, # https://www.rdkit.org/docs/source/rdkit.Chem.Lipinski.html
|
50 |
+
'HBA': hba, # https://www.rdkit.org/docs/source/rdkit.Chem.Lipinski.html
|
51 |
+
'TopoPSA': None, # http://mordred-descriptor.github.io/documentation/master/api/mordred.TopoPSA.html
|
52 |
+
}
|
53 |
+
|
54 |
+
FILTER_MAP = {
|
55 |
+
'PAINS filter': None,
|
56 |
+
"Lipinski's rule of five": None, # https://gist.github.com/strets123/fdc4db6d450b66345f46
|
57 |
+
'ADMET filter': None,
|
58 |
+
'TCL filter': None
|
59 |
+
}
|
60 |
+
|
61 |
+
TASK_MAP = {
|
62 |
+
'Drug-target interaction': 'binary',
|
63 |
+
'Drug-target binding affinity': 'regression',
|
64 |
+
}
|
65 |
+
|
66 |
+
PRESET_MAP = {
|
67 |
+
'DeepDTA': 'deep_dta',
|
68 |
+
'GraphDTA': 'graph_dta'
|
69 |
+
}
|
70 |
+
|
71 |
+
TARGET_FAMILY_MAP = {
|
72 |
+
'Auto-detect': 'detect',
|
73 |
+
'Manually-labelled': 'labelled',
|
74 |
+
'Library-labelled': 'labelled',
|
75 |
+
'Kinases': 'kinases',
|
76 |
+
'Non-kinase enzymes': 'non-kinase_enzymes',
|
77 |
+
'Membrane receptors': 'membrane_receptors',
|
78 |
+
'Nuclear receptors': 'nuclear_receptors',
|
79 |
+
'Ion channels': 'ion_channels',
|
80 |
+
'Other protein targets': 'other_protein_targets',
|
81 |
+
'Kinases (auto-detected)': 'kinases',
|
82 |
+
'Non-kinase enzymes (auto-detected)': 'non-kinase_enzymes',
|
83 |
+
'Membrane receptors (auto-detected)': 'membrane_receptors',
|
84 |
+
'Nuclear receptors (auto-detected)': 'nuclear_receptors',
|
85 |
+
'Ion channels (auto-detected)': 'ion_channels',
|
86 |
+
'Other protein targets (auto-detected)': 'other_protein_targets',
|
87 |
+
'Indiscriminate': 'indiscriminate'
|
88 |
+
}
|
89 |
+
|
90 |
+
TARGET_LIBRARY_MAP = {
|
91 |
+
'STITCH': 'stitch.csv',
|
92 |
+
'Drug Repurposing Hub': 'drug_repurposing_hub.csv',
|
93 |
+
}
|
94 |
+
|
95 |
+
DRUG_LIBRARY_MAP = {
|
96 |
+
'ChEMBL': 'chembl.csv',
|
97 |
+
'DrugBank': 'drug_bank.csv',
|
98 |
+
}
|
99 |
+
|
100 |
+
MODE_LIST = [
|
101 |
+
'Drug screening',
|
102 |
+
'Drug repurposing',
|
103 |
+
'Drug-target pair'
|
104 |
+
]
|
105 |
+
|
106 |
+
def predictions_to_df(predictions):
|
107 |
+
predictions = [pd.DataFrame(prediction) for prediction in predictions]
|
108 |
+
prediction_df = pd.concat(predictions, ignore_index=True)
|
109 |
+
return prediction_df
|
110 |
+
|
111 |
+
|
112 |
+
def submit_predict(predict_data, task, preset, target_family):
|
113 |
+
task = TASK_MAP[task]
|
114 |
+
preset = PRESET_MAP[preset]
|
115 |
+
target_family = TARGET_FAMILY_MAP[target_family]
|
116 |
+
|
117 |
+
match target_family:
|
118 |
+
case 'labelled':
|
119 |
+
pass # target_family_list = ...
|
120 |
+
case 'detect':
|
121 |
+
pass # target_family_list = ...
|
122 |
+
case _:
|
123 |
+
target_family_list = [target_family]
|
124 |
+
|
125 |
+
prediction_df = pd.DataFrame()
|
126 |
+
for target_family in target_family_list:
|
127 |
+
with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
|
128 |
+
cfg = hydra.compose(
|
129 |
+
config_name="webserver_inference",
|
130 |
+
overrides=[
|
131 |
+
f"task={task}",
|
132 |
+
f"preset={preset}",
|
133 |
+
f"ckpt_path=resources/checkpoints/{preset}-{task}-{target_family}.ckpt",
|
134 |
+
f"data.data_file='{str(predict_data)}'",
|
135 |
+
]
|
136 |
+
)
|
137 |
+
|
138 |
+
predictions, _ = predict(cfg)
|
139 |
+
prediction_df = pd.concat([prediction_df, predictions_to_df(predictions)])
|
140 |
+
|
141 |
+
return [gr.DataFrame(value=prediction_df, visible=True), gr.Tabs(selected=1)]
|
142 |
+
|
143 |
+
|
144 |
+
# Define a function that takes a CSV output and a list of analytical utility functions as inputs
|
145 |
+
def submit_report(df, score_list, filter_list):
|
146 |
+
# Loop through the list of functions and apply them to the dataframe
|
147 |
+
for filter_name in filter_list:
|
148 |
+
gr.Info(f'Applying {filter_name}...')
|
149 |
+
|
150 |
+
for score_name in score_list:
|
151 |
+
gr.Info(f'Calculating {score_name}...')
|
152 |
+
# Apply the function to the dataframe and assign the result to a new column
|
153 |
+
df[score_name] = df.apply(SCORE_MAP[score_name], axis=1)
|
154 |
+
# Return the dataframe as a table
|
155 |
+
return [gr.DataFrame(visible=False), gr.DataFrame(value=df, visible=True)]
|
156 |
+
|
157 |
+
|
158 |
+
def change_layout(mode):
|
159 |
+
match mode:
|
160 |
+
case "Drug screening":
|
161 |
+
return [
|
162 |
+
gr.Row(visible=True),
|
163 |
+
gr.Row(visible=False),
|
164 |
+
gr.Row(visible=False),
|
165 |
+
gr.Dropdown(choices=[
|
166 |
+
'Auto-detect',
|
167 |
+
'Kinases',
|
168 |
+
'Non-kinase enzymes',
|
169 |
+
'Membrane receptors',
|
170 |
+
'Nuclear receptors',
|
171 |
+
'Ion channels',
|
172 |
+
'Other protein targets',
|
173 |
+
'Indiscriminate'
|
174 |
+
])
|
175 |
+
]
|
176 |
+
case "Drug repurposing":
|
177 |
+
return [
|
178 |
+
gr.Row(visible=False),
|
179 |
+
gr.Row(visible=True),
|
180 |
+
gr.Row(visible=False),
|
181 |
+
gr.Dropdown(choices=[
|
182 |
+
'Library-labelled',
|
183 |
+
'Indiscriminate'
|
184 |
+
])
|
185 |
+
]
|
186 |
+
case "Drug-target pair":
|
187 |
+
return [
|
188 |
+
gr.Row(visible=False),
|
189 |
+
gr.Row(visible=False),
|
190 |
+
gr.Row(visible=True),
|
191 |
+
gr.Dropdown(choices=[
|
192 |
+
'Auto-detect',
|
193 |
+
'Manually-labelled',
|
194 |
+
'Indiscriminate'
|
195 |
+
])
|
196 |
+
]
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
with gr.Blocks(theme=gr.themes.Soft(spacing_size="sm", text_size='md'), title='DeepScreen') as demo:
|
201 |
+
with gr.Tabs() as tabs:
|
202 |
+
with gr.TabItem(label='Inference', id=0) as inference:
|
203 |
+
gr.Markdown('''
|
204 |
+
# <center>DeepScreen Inference Service</center>
|
205 |
+
|
206 |
+
DeepScreen for predicting drug-target interaction/binding affinity.
|
207 |
+
''')
|
208 |
+
|
209 |
+
mode = gr.Radio(label='Mode', choices=MODE_LIST, value='Drug screening')
|
210 |
+
|
211 |
+
with gr.Row(visible=True) as drug_screening:
|
212 |
+
with gr.Column():
|
213 |
+
target = gr.Textbox(label='Target FASTA sequence')
|
214 |
+
drug_library = gr.Dropdown(label='Drug library', choices=DRUG_LIBRARY_MAP.keys())
|
215 |
+
|
216 |
+
# Modify the pd df directly with df['X2'] = target
|
217 |
+
|
218 |
+
with gr.Row(visible=False) as drug_repurposing:
|
219 |
+
with gr.Column():
|
220 |
+
drug = gr.Textbox(label='Drug SMILES sequence')
|
221 |
+
target_library = gr.Dropdown(label='Target library', choices=TARGET_LIBRARY_MAP.keys())
|
222 |
+
|
223 |
+
# Modify the pd df directly with df['X1'] = drug
|
224 |
+
|
225 |
+
|
226 |
+
with gr.Row(visible=False) as drug_target_pair:
|
227 |
+
predict_data = gr.File(label='Prediction dataset file', file_count="single", type='filepath', height=50)
|
228 |
+
|
229 |
+
with gr.Row(visible=True):
|
230 |
+
task = gr.Dropdown(list(TASK_MAP.keys()), label='Task')
|
231 |
+
preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Preset')
|
232 |
+
target_family = gr.Dropdown(choices=[
|
233 |
+
'Auto-detect',
|
234 |
+
'Kinases',
|
235 |
+
'Non-kinase enzymes',
|
236 |
+
'Membrane receptors',
|
237 |
+
'Nuclear receptors',
|
238 |
+
'Ion channels',
|
239 |
+
'Other protein targets',
|
240 |
+
'Indiscriminate'
|
241 |
+
], label='Target family')
|
242 |
+
|
243 |
+
with gr.Row(visible=True):
|
244 |
+
predict_btn = gr.Button("Predict", variant="primary")
|
245 |
+
|
246 |
+
with gr.TabItem(label='Report', id=1) as report:
|
247 |
+
gr.Markdown('''
|
248 |
+
# <center>DeepScreen Virtual Screening Report</center>
|
249 |
+
|
250 |
+
Analytic report for virtual screening predictions.
|
251 |
+
''')
|
252 |
+
with gr.Row():
|
253 |
+
scores = gr.CheckboxGroup(SCORE_MAP.keys(), label='Scores')
|
254 |
+
filters = gr.CheckboxGroup(FILTER_MAP.keys(), label='Filters')
|
255 |
+
|
256 |
+
with gr.Row():
|
257 |
+
df_original = gr.Dataframe(type="pandas", interactive=False, height=500, visible=False)
|
258 |
+
df_report = gr.Dataframe(type="pandas", interactive=False, height=500, visible=False)
|
259 |
+
with gr.Row():
|
260 |
+
clear_btn = gr.ClearButton()
|
261 |
+
analyze_btn = gr.Button("Report", variant="primary")
|
262 |
+
|
263 |
+
mode.change(change_layout, mode, [drug_screening, drug_repurposing, drug_target_pair, target_family], show_progress=False)
|
264 |
+
predict_btn.click(fn=submit_predict, inputs=[predict_data, task, preset, target_family], outputs=[df_original, tabs])
|
265 |
+
analyze_btn.click(fn=submit_report, inputs=[df_original, scores, filters], outputs=[df_original, df_report])
|
266 |
+
|
267 |
+
|
268 |
+
# js = """function () {
|
269 |
+
# gradioURL = window.location.href
|
270 |
+
# if (!gradioURL.endsWith('?__theme=light')) {
|
271 |
+
# window.location.replace(gradioURL + '?__theme=light');
|
272 |
+
# }
|
273 |
+
# }"""
|
274 |
+
js="""
|
275 |
+
() => {
|
276 |
+
document.body.classList.remove('dark');
|
277 |
+
document.querySelector('gradio-app').style.backgroundColor = 'var(--color-background-primary)'
|
278 |
+
}
|
279 |
+
"""
|
280 |
+
demo.load(None, None, None, js=js)
|
281 |
|
|
|
282 |
|
283 |
+
demo.close()
|
284 |
+
demo.launch(debug=True)
|