libokj commited on
Commit
953417b
·
1 Parent(s): 9c47531

Upload 299 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. configs/data/dti_data.yaml +4 -4
  2. configs/data/protein_featurizer/word2vec.yaml +1 -1
  3. configs/model/decoder/concat_mlp.yaml +6 -0
  4. configs/model/decoder/mlp_deepdta.yaml +6 -0
  5. configs/model/decoder/mlp_lazy.yaml +5 -0
  6. configs/model/drug_encoder/cnn.yaml +9 -0
  7. configs/model/drug_encoder/cnn_deepdta.yaml +7 -0
  8. configs/model/drug_encoder/gat.yaml +5 -0
  9. configs/model/drug_encoder/gcn.yaml +5 -0
  10. configs/model/drug_encoder/gin.yaml +5 -0
  11. configs/model/drug_encoder/lstm.yaml +0 -0
  12. configs/model/drug_encoder/transformer.yaml +11 -0
  13. configs/model/dti_model.yaml +1 -1
  14. configs/model/metrics/accuracy.yaml +1 -1
  15. configs/model/metrics/auprc.yaml +1 -1
  16. configs/model/metrics/auroc.yaml +1 -1
  17. configs/model/metrics/bedroc.yaml +1 -1
  18. configs/model/metrics/ci.yaml +2 -2
  19. configs/model/metrics/concordance_index.yaml +2 -0
  20. configs/model/metrics/dta_metrics.yaml +3 -1
  21. configs/model/metrics/dti_case_study.yaml +18 -0
  22. configs/model/metrics/dti_metrics.yaml +2 -1
  23. configs/model/metrics/ef.yaml +21 -5
  24. configs/model/metrics/f1_score.yaml +1 -1
  25. configs/model/metrics/hit_rate.yaml +22 -1
  26. configs/model/metrics/ir_hit_rate.yaml +3 -0
  27. configs/model/metrics/mean_squared_error.yaml +2 -0
  28. configs/model/metrics/mse.yaml +1 -1
  29. configs/model/metrics/prc.yaml +1 -1
  30. configs/model/metrics/precision.yaml +1 -1
  31. configs/model/metrics/recall.yaml +1 -1
  32. configs/model/metrics/roc.yaml +1 -1
  33. configs/model/metrics/sensitivity.yaml +1 -1
  34. configs/model/metrics/specificity.yaml +1 -1
  35. configs/model/metrics/ww_dti_metrics.yaml +1 -1
  36. configs/model/predictor/drug_vqa.yaml +2 -1
  37. configs/model/protein_encoder/cnn.yaml +7 -0
  38. configs/model/protein_encoder/cnn_deepdta.yaml +7 -0
  39. configs/model/protein_encoder/lstm.yaml +0 -0
  40. configs/model/protein_encoder/tape_bert.yaml +3 -0
  41. configs/model/protein_encoder/transformer.yaml +12 -0
  42. configs/preset/bacpi.yaml +37 -0
  43. configs/preset/coa_dti_pro.yaml +28 -0
  44. configs/preset/deep_dtaf.yaml +19 -0
  45. configs/preset/drug_ban.yaml +1 -1
  46. configs/preset/m_graph_dta.yaml +4 -1
  47. configs/preset/mol_trans.yaml +1 -1
  48. configs/preset/monn.yaml +17 -0
  49. configs/preset/transformer_cpi.yaml +2 -1
  50. configs/preset/transformer_cpi_2.yaml +4 -0
configs/data/dti_data.yaml CHANGED
@@ -1,7 +1,7 @@
1
  _target_: deepscreen.data.dti.DTIDataModule
2
 
3
  defaults:
4
- - split: null
5
  - drug_featurizer: none # ???
6
  - protein_featurizer: none # ???
7
  - collator: default
@@ -13,8 +13,8 @@ data_dir: ${paths.data_dir}
13
  data_file: null
14
  train_val_test_split: null
15
 
16
- batch_size: ???
17
  num_workers: 0
18
  pin_memory: false
19
-
20
- #train: ${train}
 
1
  _target_: deepscreen.data.dti.DTIDataModule
2
 
3
  defaults:
4
+ - split: none
5
  - drug_featurizer: none # ???
6
  - protein_featurizer: none # ???
7
  - collator: default
 
13
  data_file: null
14
  train_val_test_split: null
15
 
16
+ batch_size: 2
17
  num_workers: 0
18
  pin_memory: false
19
+ query: X2
20
+ #train: ${train}
configs/data/protein_featurizer/word2vec.yaml CHANGED
@@ -3,4 +3,4 @@ _partial_: true
3
 
4
  model:
5
  _target_: gensim.models.Word2Vec.load
6
- fname: ${paths.resource_dir}/models/word2vec_30.model
 
3
 
4
  model:
5
  _target_: gensim.models.Word2Vec.load
6
+ fname: ${paths.resource_dir}/models/word2vec_30.model
configs/model/decoder/concat_mlp.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ _target_: deepscreen.models.components.mlp.ConcatMLP
2
+
3
+ input_channels: ${eval:${model.drug_encoder.out_channels}+${model.protein_encoder.out_channels}}
4
+ out_channels: 512
5
+ hidden_channels: [1024,1024]
6
+ dropout: 0.1
configs/model/decoder/mlp_deepdta.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ _target_: deepscreen.models.components.mlp.MLP2
2
+
3
+ input_channels: ${eval:${model.drug_encoder.out_channels}+${model.protein_encoder.out_channels}}
4
+ out_channels: 1
5
+ hidden_channels: [1024,1024,512]
6
+ dropout: 0.1
configs/model/decoder/mlp_lazy.yaml ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ _target_: deepscreen.models.components.mlp.LazyMLP
2
+
3
+ out_channels: 1
4
+ hidden_channels: [1024,1024,512]
5
+ dropout: 0.1
configs/model/drug_encoder/cnn.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ _target_: deepscreen.models.components.cnn.CNN
2
+
3
+ max_sequence_length: ${data.drug_featurizer.max_sequence_length}
4
+ filters: [32, 64, 96]
5
+ kernels: [4, 6, 8]
6
+ in_channels: ${data.drug_featurizer.in_channels}
7
+ out_channels: 256
8
+
9
+ # TODO refactor the in_channels argument pipeline to be more reasonable
configs/model/drug_encoder/cnn_deepdta.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ _target_: deepscreen.models.components.cnn_deepdta.CNN_DeepDTA
2
+
3
+ max_sequence_length: ${data.drug_featurizer.max_sequence_length}
4
+ filters: [32, 64, 96]
5
+ kernels: [4, 6, 8]
6
+ in_channels: ${data.drug_featurizer.in_channels}
7
+ out_channels: 128
configs/model/drug_encoder/gat.yaml ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ _target_: deepscreen.models.components.gat.GAT
2
+
3
+ num_features: 78
4
+ out_channels: 128
5
+ dropout: 0.2
configs/model/drug_encoder/gcn.yaml ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ _target_: deepscreen.models.components.gcn.GCN
2
+
3
+ num_features: 78
4
+ out_channels: 128
5
+ dropout: 0.2
configs/model/drug_encoder/gin.yaml ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ _target_: deepscreen.models.components.gin.GIN
2
+
3
+ num_features: 78
4
+ out_channels: 128
5
+ dropout: 0.2
configs/model/drug_encoder/lstm.yaml ADDED
File without changes
configs/model/drug_encoder/transformer.yaml ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _target_: deepscreen.models.components.transformer
2
+
3
+ input_dim: 1024
4
+ emb_size: 128
5
+ max_position_size: 50
6
+ dropout: 0.1
7
+ n_layer: 8
8
+ intermediate_size: 512
9
+ num_attention_heads: 8
10
+ attention_probs_dropout: 0.1
11
+ hidden_dropout: 0.1
configs/model/dti_model.yaml CHANGED
@@ -5,7 +5,7 @@ defaults:
5
  - optimizer: adam
6
  - scheduler: default
7
  - predictor: none
8
- - metrics: dti_metrics
9
 
10
  out: ${task.out}
11
  loss: ${task.loss}
 
5
  - optimizer: adam
6
  - scheduler: default
7
  - predictor: none
8
+ - metrics: null
9
 
10
  out: ${task.out}
11
  loss: ${task.loss}
configs/model/metrics/accuracy.yaml CHANGED
@@ -1,4 +1,4 @@
1
- accuracy:
2
  _target_: torchmetrics.Accuracy
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
 
1
+ Accuracy:
2
  _target_: torchmetrics.Accuracy
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
configs/model/metrics/auprc.yaml CHANGED
@@ -1,4 +1,4 @@
1
- auprc:
2
  _target_: torchmetrics.AveragePrecision
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
 
1
+ AUPRC:
2
  _target_: torchmetrics.AveragePrecision
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
configs/model/metrics/auroc.yaml CHANGED
@@ -1,4 +1,4 @@
1
- auroc:
2
  _target_: torchmetrics.AUROC
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
 
1
+ AUROC:
2
  _target_: torchmetrics.AUROC
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
configs/model/metrics/bedroc.yaml CHANGED
@@ -1,3 +1,3 @@
1
- bedroc:
2
  _target_: deepscreen.models.metrics.bedroc.BEDROC
3
  alpha: 80.5
 
1
+ BEDROC:
2
  _target_: deepscreen.models.metrics.bedroc.BEDROC
3
  alpha: 80.5
configs/model/metrics/ci.yaml CHANGED
@@ -1,2 +1,2 @@
1
- # FIXME: implement concordance index
2
- _target_:
 
1
+ CI:
2
+ _target_: deepscreen.models.metrics.ci.ConcordanceIndex
configs/model/metrics/concordance_index.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # FIXME: implement concordance index
2
+ _target_:
configs/model/metrics/dta_metrics.yaml CHANGED
@@ -1,2 +1,4 @@
1
  defaults:
2
- - mean_squared_error
 
 
 
1
  defaults:
2
+ - mse
3
+ - pearson
4
+ - ci
configs/model/metrics/dti_case_study.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # train/test with many metrics at once
2
+
3
+ defaults:
4
+ - auroc
5
+ - auprc
6
+ - specificity
7
+ - sensitivity
8
+ - precision
9
+ - recall
10
+ - f1_score
11
+ - ef
12
+ - bedroc
13
+ - hit_rate
14
+
15
+ # Common virtual screening metrics:
16
+ # - ef
17
+ # - bedroc
18
+ # - hit_rate
configs/model/metrics/dti_metrics.yaml CHANGED
@@ -1,4 +1,4 @@
1
- # train with many loggers at once
2
 
3
  defaults:
4
  - auroc
@@ -8,6 +8,7 @@ defaults:
8
  - precision
9
  - recall
10
  - f1_score
 
11
  # Common virtual screening metrics:
12
  # - ef
13
  # - bedroc
 
1
+ # train/test with many metrics at once
2
 
3
  defaults:
4
  - auroc
 
8
  - precision
9
  - recall
10
  - f1_score
11
+
12
  # Common virtual screening metrics:
13
  # - ef
14
  # - bedroc
configs/model/metrics/ef.yaml CHANGED
@@ -1,7 +1,23 @@
1
- ef1:
2
- _target_: deepscreen.models.metrics.ef.EF
3
  alpha: 0.01
4
 
5
- ef5:
6
- _target_: deepscreen.models.metrics.ef.EF
7
- alpha: 0.05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ EF1:
2
+ _target_: deepscreen.models.metrics.ef.EnrichmentFactor
3
  alpha: 0.01
4
 
5
+ EF2:
6
+ _target_: deepscreen.models.metrics.ef.EnrichmentFactor
7
+ alpha: 0.02
8
+
9
+ EF5:
10
+ _target_: deepscreen.models.metrics.ef.EnrichmentFactor
11
+ alpha: 0.05
12
+
13
+ EF10:
14
+ _target_: deepscreen.models.metrics.ef.EnrichmentFactor
15
+ alpha: 0.10
16
+
17
+ EF15:
18
+ _target_: deepscreen.models.metrics.ef.EnrichmentFactor
19
+ alpha: 0.15
20
+
21
+ EF20:
22
+ _target_: deepscreen.models.metrics.ef.EnrichmentFactor
23
+ alpha: 0.20
configs/model/metrics/f1_score.yaml CHANGED
@@ -1,4 +1,4 @@
1
- f1_score:
2
  _target_: torchmetrics.F1Score
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
 
1
+ F1:
2
  _target_: torchmetrics.F1Score
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
configs/model/metrics/hit_rate.yaml CHANGED
@@ -1,3 +1,24 @@
1
- hit_rate:
 
 
 
 
 
 
 
 
2
  _target_: deepscreen.models.metrics.hit_rate.HitRate
3
  alpha: 0.05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ HR0_01:
2
+ _target_: deepscreen.models.metrics.hit_rate.HitRate
3
+ alpha: 0.01
4
+
5
+ HR0_02:
6
+ _target_: deepscreen.models.metrics.hit_rate.HitRate
7
+ alpha: 0.02
8
+
9
+ HR0_05:
10
  _target_: deepscreen.models.metrics.hit_rate.HitRate
11
  alpha: 0.05
12
+
13
+ HR0_10:
14
+ _target_: deepscreen.models.metrics.hit_rate.HitRate
15
+ alpha: 0.10
16
+
17
+ HR0_15:
18
+ _target_: deepscreen.models.metrics.hit_rate.HitRate
19
+ alpha: 0.15
20
+
21
+ HR0_20:
22
+ _target_: deepscreen.models.metrics.hit_rate.HitRate
23
+ alpha: 0.20
24
+
configs/model/metrics/ir_hit_rate.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ RetrievalHitRate:
2
+ _target_: torchmetrics.retrieval.RetrievalHitRate
3
+ top_k: 100
configs/model/metrics/mean_squared_error.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ mean_squared_error:
2
+ _target_: torchmetrics.MeanSquaredError
configs/model/metrics/mse.yaml CHANGED
@@ -1,2 +1,2 @@
1
- mean_squared_error:
2
  _target_: torchmetrics.MeanSquaredError
 
1
+ Mean squared error:
2
  _target_: torchmetrics.MeanSquaredError
configs/model/metrics/prc.yaml CHANGED
@@ -1,4 +1,4 @@
1
- prc:
2
  _target_: torchmetrics.PrecisionRecallCurve
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
 
1
+ PR curve:
2
  _target_: torchmetrics.PrecisionRecallCurve
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
configs/model/metrics/precision.yaml CHANGED
@@ -1,4 +1,4 @@
1
- precision:
2
  _target_: torchmetrics.Precision
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
 
1
+ Precision:
2
  _target_: torchmetrics.Precision
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
configs/model/metrics/recall.yaml CHANGED
@@ -1,4 +1,4 @@
1
- recall:
2
  _target_: torchmetrics.Recall
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
 
1
+ Recall:
2
  _target_: torchmetrics.Recall
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
configs/model/metrics/roc.yaml CHANGED
@@ -1,4 +1,4 @@
1
- roc:
2
  _target_: torchmetrics.ROC
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
 
1
+ ROC curve:
2
  _target_: torchmetrics.ROC
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
configs/model/metrics/sensitivity.yaml CHANGED
@@ -1,4 +1,4 @@
1
- sensitivity:
2
  _target_: deepscreen.models.metrics.sensitivity.Sensitivity
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
 
1
+ Sensitivity:
2
  _target_: deepscreen.models.metrics.sensitivity.Sensitivity
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
configs/model/metrics/specificity.yaml CHANGED
@@ -1,4 +1,4 @@
1
- specificity:
2
  _target_: torchmetrics.Specificity
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
 
1
+ Specificity:
2
  _target_: torchmetrics.Specificity
3
  task: ${task.task}
4
  num_classes: ${task.num_classes}
configs/model/metrics/ww_dti_metrics.yaml CHANGED
@@ -190,4 +190,4 @@ F1Score0_95:
190
  _target_: torchmetrics.F1Score
191
  task: ${task.task}
192
  num_classes: ${task.num_classes}
193
- threshold: 0.95
 
190
  _target_: torchmetrics.F1Score
191
  task: ${task.task}
192
  num_classes: ${task.num_classes}
193
+ threshold: 0.95
configs/model/predictor/drug_vqa.yaml CHANGED
@@ -5,7 +5,7 @@ lstm_hid_dim: 64
5
  d_a: 32
6
  r: 10
7
  n_chars_smi: 577
8
- n_chars_seq: 21
9
  dropout: 0.2
10
  in_channels: 8
11
  cnn_channels: 32
@@ -13,3 +13,4 @@ cnn_layers: 4
13
  emb_dim: 30
14
  dense_hid: 64
15
 
 
 
5
  d_a: 32
6
  r: 10
7
  n_chars_smi: 577
8
+ n_chars_seq: 26
9
  dropout: 0.2
10
  in_channels: 8
11
  cnn_channels: 32
 
13
  emb_dim: 30
14
  dense_hid: 64
15
 
16
+
configs/model/protein_encoder/cnn.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ _target_: deepscreen.models.components.cnn.CNN
2
+
3
+ max_sequence_length: ${data.protein_featurizer.max_sequence_length}
4
+ filters: [32, 64, 96]
5
+ kernels: [4, 8, 12]
6
+ in_channels: ${data.protein_featurizer.in_channels}
7
+ out_channels: 256
configs/model/protein_encoder/cnn_deepdta.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ _target_: deepscreen.models.components.cnn_deepdta.CNN_DeepDTA
2
+
3
+ max_sequence_length: ${data.protein_featurizer.max_sequence_length}
4
+ filters: [32, 64, 96]
5
+ kernels: [4, 8, 12]
6
+ in_channels: ${data.protein_featurizer.in_channels}
7
+ out_channels: 128
configs/model/protein_encoder/lstm.yaml ADDED
File without changes
configs/model/protein_encoder/tape_bert.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ _target_: tape.ProteinBertModel.from_pretrained
2
+
3
+ pretrained_model_name_or_path: bert-base
configs/model/protein_encoder/transformer.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _target_: deepscreen.models.components.transformer
2
+
3
+ input_dim: 8420
4
+ emb_size: 64
5
+ max_position_size: 545 50
6
+ dropout: 0.1
7
+ n_layer: 2
8
+ intermediate_size: 256
9
+ num_attention_heads: 4
10
+ attention_probs_dropout: 0.1
11
+ hidden_dropout: 0.1
12
+
configs/preset/bacpi.yaml ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+ model:
3
+ predictor:
4
+ _target_: deepscreen.models.predictors.bacpi.BACPI
5
+
6
+ n_atom: 20480
7
+ n_amino: 8448
8
+ comp_dim: 80
9
+ prot_dim: 80
10
+ latent_dim: 80
11
+ gat_dim: 50
12
+ num_head: 3
13
+ dropout: 0.1
14
+ alpha: 0.1
15
+ window: 5
16
+ layer_cnn: 3
17
+ optimizer:
18
+ lr: 5e-4
19
+
20
+ data:
21
+ batch_size: 16
22
+
23
+ collator:
24
+ automatic_padding: True
25
+
26
+ drug_featurizer:
27
+ _target_: deepscreen.models.predictors.bacpi.drug_featurizer
28
+ _partial_: true
29
+ radius: 2
30
+
31
+ protein_featurizer:
32
+ _target_: deepscreen.models.predictors.bacpi.split_sequence
33
+ _partial_: true
34
+ ngram: 3
35
+ # collator:
36
+ # _target_: deepscreen.models.predictors.transformer_cpi_2.pack
37
+ # _partial_: true
configs/preset/coa_dti_pro.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+ defaults:
3
+ - override /data/protein_featurizer: none
4
+
5
+ model:
6
+ predictor:
7
+ _target_: deepscreen.models.predictors.coa_dti_pro.CoaDTIPro
8
+
9
+ n_fingerprint: 20480
10
+ n_word: 26
11
+ dim: 512
12
+ layer_output: 3
13
+ layer_coa: 1
14
+ nhead: 8
15
+ dropout: 0.1
16
+ co_attention: 'inter'
17
+ gcn_pooling: False
18
+
19
+ esm_model_and_alphabet:
20
+ _target_: esm.pretrained.load_model_and_alphabet
21
+ model_name: resources/models/esm/esm1_t6_43M_UR50S.pt
22
+
23
+ data:
24
+ drug_featurizer:
25
+ _target_: deepscreen.models.predictors.coa_dti_pro.drug_featurizer
26
+ _partial_: true
27
+ radius: 2
28
+ batch_size: 1
configs/preset/deep_dtaf.yaml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+ defaults:
3
+ - override /data/drug_featurizer: label
4
+ - override /data/protein_featurizer: label
5
+ - override /model/predictor: deep_dta
6
+
7
+ data:
8
+ drug_featurizer:
9
+ charset: {'Z', 'Y', 'H', '[', 'O', ']', '5', 'M', 'K', '.', '9', 'e',
10
+ '(', 'l', 'U', 'V', 'L', 'B', 'y', 'm', 'd', 'h', 'T', 'A',
11
+ 'W', 'b', 'i', 'D', 'R', '8', '/', 's', '#', 'u', '+', '@',
12
+ 'n', '%', 'F', 'r', 't', 'I', 'S', '6', 'P', 'G', 'f', ')',
13
+ '-', '\\', 'C', 'E', 'o', '3', '2', '1', '=', 'g', 'c', 'N',
14
+ '7', '4', 'a', '0']
15
+ batch_size: 512
16
+
17
+ model:
18
+ predictor:
19
+ smi_charset_len: ${eval:'len(${data.protein_featurizer.charset})+1'}
configs/preset/drug_ban.yaml CHANGED
@@ -25,4 +25,4 @@ data:
25
  _partial_: true
26
  max_drug_nodes: 330
27
 
28
- batch_size: 512
 
25
  _partial_: true
26
  max_drug_nodes: 330
27
 
28
+ batch_size: 256
configs/preset/m_graph_dta.yaml CHANGED
@@ -16,4 +16,7 @@ data:
16
  atom_features:
17
  _target_: deepscreen.models.predictors.m_graph_dta.atom_features
18
  _partial_: true
19
- batch_size: 512
 
 
 
 
16
  atom_features:
17
  _target_: deepscreen.models.predictors.m_graph_dta.atom_features
18
  _partial_: true
19
+ batch_size: 512
20
+
21
+ trainer:
22
+ precision: 'bf16'
configs/preset/mol_trans.yaml CHANGED
@@ -36,4 +36,4 @@ model:
36
  #flatten_dim: 293412
37
 
38
  optimizer:
39
- lr: 1e-6
 
36
  #flatten_dim: 293412
37
 
38
  optimizer:
39
+ lr: 1e-6
configs/preset/monn.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+ defaults:
3
+ - dti_experiment
4
+ # TODO MONN featurizers not fully implemented yet
5
+ - override /data/drug_featurizer: label
6
+ - override /data/protein_featurizer: label
7
+ - override /model/predictor: monn
8
+ - override /task: binary
9
+ - _self_
10
+
11
+ model:
12
+ loss:
13
+ _target_: deepscreen.models.loss.multitask_loss.MultitaskWeightedLoss
14
+ loss_fns:
15
+ - _target_: ${model.loss}
16
+ - _target_: deepscreen.models.predictors.monn.MaskedBCELoss
17
+ weights: [1, 0.1]
configs/preset/transformer_cpi.yaml CHANGED
@@ -16,6 +16,7 @@ model:
16
  atom_dim: 34
17
 
18
  data:
19
- batch_size: 16
20
  collator:
21
  automatic_padding: True
 
 
16
  atom_dim: 34
17
 
18
  data:
19
+ batch_size: 128
20
  collator:
21
  automatic_padding: True
22
+
configs/preset/transformer_cpi_2.yaml CHANGED
@@ -4,7 +4,11 @@ defaults:
4
  - override /data/protein_featurizer: tokenizer
5
 
6
  model:
 
 
 
7
  predictor:
 
8
  _target_: deepscreen.models.predictors.transformer_cpi_2.TransformerCPI2
9
 
10
  encoder:
 
4
  - override /data/protein_featurizer: tokenizer
5
 
6
  model:
7
+ optimizer:
8
+ lr: 0.00001
9
+
10
  predictor:
11
+
12
  _target_: deepscreen.models.predictors.transformer_cpi_2.TransformerCPI2
13
 
14
  encoder: