Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,2043 +1,50 @@
|
|
1 |
-
from
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import threading
|
7 |
-
from math import pi
|
8 |
-
from uuid import uuid4
|
9 |
|
10 |
-
import io
|
11 |
-
import os
|
12 |
-
import pathlib
|
13 |
-
from pathlib import Path
|
14 |
-
import sys
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
import requests
|
24 |
-
from rdkit.Chem.PandasTools import _MolPlusFingerprint
|
25 |
-
from rdkit.Chem.rdMolDescriptors import CalcNumRotatableBonds, CalcNumHeavyAtoms, CalcNumAtoms, CalcTPSA
|
26 |
-
from requests.adapters import HTTPAdapter, Retry
|
27 |
-
from rdkit import Chem
|
28 |
-
from rdkit.Chem import RDConfig, Descriptors, Draw, Lipinski, Crippen, PandasTools
|
29 |
-
from rdkit.Chem.Scaffolds import MurckoScaffold
|
30 |
-
import seaborn as sns
|
31 |
|
32 |
-
|
33 |
-
from bokeh.palettes import Category20c_20
|
34 |
-
from bokeh.plotting import figure
|
35 |
-
from bokeh.transform import cumsum
|
36 |
-
from bokeh.resources import INLINE
|
37 |
-
import panel as pn
|
38 |
|
39 |
-
|
40 |
-
from tqdm.auto import tqdm
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
import sascorer
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
# DF_FOR_REPORT = pd.DataFrame()
|
51 |
-
|
52 |
-
pd.set_option('display.float_format', '{:.3f}'.format)
|
53 |
-
PandasTools.molRepresentation = 'svg'
|
54 |
-
PandasTools.drawOptions = Draw.rdMolDraw2D.MolDrawOptions()
|
55 |
-
PandasTools.drawOptions.clearBackground = False
|
56 |
-
PandasTools.drawOptions.bondLineWidth = 1
|
57 |
-
PandasTools.drawOptions.explicitMethyl = True
|
58 |
-
PandasTools.drawOptions.singleColourWedgeBonds = True
|
59 |
-
PandasTools.drawOptions.useCDKAtomPalette()
|
60 |
-
PandasTools.molSize = (128, 80)
|
61 |
-
|
62 |
-
SESSION = requests.Session()
|
63 |
-
ADAPTER = HTTPAdapter(max_retries=Retry(total=5, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504]))
|
64 |
-
SESSION.mount('http://', ADAPTER)
|
65 |
-
SESSION.mount('https://', ADAPTER)
|
66 |
-
|
67 |
-
# SCHEDULER = BackgroundScheduler()
|
68 |
-
|
69 |
-
UNIPROT_ENDPOINT = 'https://rest.uniprot.org/uniprotkb/{query}'
|
70 |
-
|
71 |
-
CUSTOM_DATASET_MAX_LEN = 10_000
|
72 |
-
|
73 |
-
CSS = """
|
74 |
-
.help-tip {
|
75 |
-
position: absolute;
|
76 |
-
display: inline-block;
|
77 |
-
top: 16px;
|
78 |
-
right: 0px;
|
79 |
-
text-align: center;
|
80 |
-
border-radius: 40%;
|
81 |
-
/* border: 2px solid darkred; background-color: #8B0000;*/
|
82 |
-
width: 24px;
|
83 |
-
height: 24px;
|
84 |
-
font-size: 16px;
|
85 |
-
line-height: 26px;
|
86 |
-
cursor: default;
|
87 |
-
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1);
|
88 |
-
z-index: 100 !important;
|
89 |
-
}
|
90 |
-
|
91 |
-
.help-tip:hover {
|
92 |
-
cursor: pointer;
|
93 |
-
/*background-color: #ccc;*/
|
94 |
-
}
|
95 |
-
|
96 |
-
.help-tip:before {
|
97 |
-
content: '?';
|
98 |
-
font-weight: 700;
|
99 |
-
color: #8B0000;
|
100 |
-
z-index: 100 !important;
|
101 |
-
}
|
102 |
-
|
103 |
-
.help-tip p {
|
104 |
-
visibility: hidden;
|
105 |
-
opacity: 0;
|
106 |
-
text-align: left;
|
107 |
-
background-color: #EFDDE3;
|
108 |
-
padding: 20px;
|
109 |
-
width: 300px;
|
110 |
-
position: absolute;
|
111 |
-
border-radius: 4px;
|
112 |
-
right: -4px;
|
113 |
-
color: #494F5A;
|
114 |
-
font-size: 13px;
|
115 |
-
line-height: normal;
|
116 |
-
transform: scale(0.7);
|
117 |
-
transform-origin: 100% 0%;
|
118 |
-
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1);
|
119 |
-
z-index: 100;
|
120 |
-
}
|
121 |
-
|
122 |
-
.help-tip:hover p {
|
123 |
-
cursor: default;
|
124 |
-
visibility: visible;
|
125 |
-
opacity: 1;
|
126 |
-
transform: scale(1.0);
|
127 |
-
}
|
128 |
-
|
129 |
-
.help-tip p:before {
|
130 |
-
position: absolute;
|
131 |
-
content: '';
|
132 |
-
width: 0;
|
133 |
-
height: 0;
|
134 |
-
border: 6px solid transparent;
|
135 |
-
border-bottom-color: #EFDDE3;
|
136 |
-
right: 10px;
|
137 |
-
top: -12px;
|
138 |
-
}
|
139 |
-
|
140 |
-
.help-tip p:after {
|
141 |
-
width: 100%;
|
142 |
-
height: 40px;
|
143 |
-
content: '';
|
144 |
-
position: absolute;
|
145 |
-
top: -5px;
|
146 |
-
left: 0;
|
147 |
-
}
|
148 |
-
|
149 |
-
.upload_button {
|
150 |
-
background-color: #008000;
|
151 |
-
}
|
152 |
-
|
153 |
-
.absolute {
|
154 |
-
position: absolute;
|
155 |
-
}
|
156 |
-
|
157 |
-
.example {
|
158 |
-
padding: 0;
|
159 |
-
background: none;
|
160 |
-
border: none;
|
161 |
-
text-decoration: underline;
|
162 |
-
box-shadow: none;
|
163 |
-
text-align: left !important;
|
164 |
-
display: inline-block !important;
|
165 |
-
}
|
166 |
-
|
167 |
-
footer {
|
168 |
-
visibility: hidden
|
169 |
-
}
|
170 |
|
|
|
171 |
"""
|
|
|
|
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
return gr.HTML(
|
177 |
-
# elem_classes="absolute",
|
178 |
-
value=f'<div class="help-tip"><p>{text}</p>',
|
179 |
-
)
|
180 |
-
|
181 |
-
|
182 |
-
def sa_score(mol):
|
183 |
-
return sascorer.calculateScore(mol)
|
184 |
-
|
185 |
-
|
186 |
-
def mw(mol):
|
187 |
-
return Chem.Descriptors.MolWt(mol)
|
188 |
-
|
189 |
-
|
190 |
-
def mr(mol):
|
191 |
-
return Crippen.MolMR(mol)
|
192 |
-
|
193 |
-
|
194 |
-
def hbd(mol):
|
195 |
-
return Lipinski.NumHDonors(mol)
|
196 |
-
|
197 |
-
|
198 |
-
def hba(mol):
|
199 |
-
return Lipinski.NumHAcceptors(mol)
|
200 |
-
|
201 |
-
|
202 |
-
def logp(mol):
|
203 |
-
return Crippen.MolLogP(mol)
|
204 |
-
|
205 |
-
|
206 |
-
def atom(mol):
|
207 |
-
return CalcNumAtoms(mol)
|
208 |
-
|
209 |
-
|
210 |
-
def heavy_atom(mol):
|
211 |
-
return CalcNumHeavyAtoms(mol)
|
212 |
-
|
213 |
-
|
214 |
-
def rotatable_bond(mol):
|
215 |
-
return CalcNumRotatableBonds((mol))
|
216 |
-
|
217 |
-
|
218 |
-
def tpsa(mol):
|
219 |
-
return CalcTPSA((mol))
|
220 |
-
|
221 |
-
|
222 |
-
def lipinski(mol):
|
223 |
-
"""
|
224 |
-
Lipinski's rules:
|
225 |
-
Hydrogen bond donors <= 5
|
226 |
-
Hydrogen bond acceptors <= 10
|
227 |
-
Molecular weight <= 500 daltons
|
228 |
-
logP <= 5
|
229 |
-
"""
|
230 |
-
if hbd(mol) > 5:
|
231 |
-
return False
|
232 |
-
elif hba(mol) > 10:
|
233 |
-
return False
|
234 |
-
elif mw(mol) > 500:
|
235 |
-
return False
|
236 |
-
elif logp(mol) > 5:
|
237 |
-
return False
|
238 |
-
else:
|
239 |
-
return True
|
240 |
-
|
241 |
-
|
242 |
-
def reos(mol):
|
243 |
-
"""
|
244 |
-
Rapid Elimination Of Swill filter:
|
245 |
-
Molecular weight between 200 and 500
|
246 |
-
LogP between -5.0 and +5.0
|
247 |
-
H-bond donor count between 0 and 5
|
248 |
-
H-bond acceptor count between 0 and 10
|
249 |
-
Formal charge between -2 and +2
|
250 |
-
Rotatable bond count between 0 and 8
|
251 |
-
Heavy atom count between 15 and 50
|
252 |
-
"""
|
253 |
-
if not 200 < mw(mol) < 500:
|
254 |
-
return False
|
255 |
-
elif not -5.0 < logp(mol) < 5.0:
|
256 |
-
return False
|
257 |
-
elif not 0 < hbd(mol) < 5:
|
258 |
-
return False
|
259 |
-
elif not 0 < hba(mol) < 10:
|
260 |
-
return False
|
261 |
-
elif not 0 < rotatable_bond(mol) < 8:
|
262 |
-
return False
|
263 |
-
elif not 15 < heavy_atom(mol) < 50:
|
264 |
-
return False
|
265 |
-
else:
|
266 |
-
return True
|
267 |
-
|
268 |
-
|
269 |
-
def ghose(mol):
|
270 |
-
"""
|
271 |
-
Ghose drug like filter:
|
272 |
-
Molecular weight between 160 and 480
|
273 |
-
LogP between -0.4 and +5.6
|
274 |
-
Atom count between 20 and 70
|
275 |
-
Molar refractivity between 40 and 130
|
276 |
-
"""
|
277 |
-
if not 160 < mw(mol) < 480:
|
278 |
-
return False
|
279 |
-
elif not -0.4 < logp(mol) < 5.6:
|
280 |
-
return False
|
281 |
-
elif not 20 < atom(mol) < 70:
|
282 |
-
return False
|
283 |
-
elif not 40 < mr(mol) < 130:
|
284 |
-
return False
|
285 |
-
else:
|
286 |
-
return True
|
287 |
-
|
288 |
-
|
289 |
-
def veber(mol):
|
290 |
-
"""
|
291 |
-
The Veber filter is a rule of thumb filter for orally active drugs described in
|
292 |
-
Veber et al., J Med Chem. 2002; 45(12): 2615-23.:
|
293 |
-
Rotatable bonds <= 10
|
294 |
-
Topological polar surface area <= 140
|
295 |
-
"""
|
296 |
-
if not rotatable_bond(mol) <= 10:
|
297 |
-
return False
|
298 |
-
elif not tpsa(mol) <= 140:
|
299 |
-
return False
|
300 |
-
else:
|
301 |
-
return True
|
302 |
-
|
303 |
-
|
304 |
-
def rule_of_three(mol):
|
305 |
-
"""
|
306 |
-
Rule of Three filter (Congreve et al., Drug Discov. Today. 8 (19): 876–7, (2003).):
|
307 |
-
Molecular weight <= 300
|
308 |
-
LogP <= 3
|
309 |
-
H-bond donor <= 3
|
310 |
-
H-bond acceptor count <= 3
|
311 |
-
Rotatable bond count <= 3
|
312 |
-
"""
|
313 |
-
if not mw(mol) <= 300:
|
314 |
-
return False
|
315 |
-
elif not logp(mol) <= 3:
|
316 |
-
return False
|
317 |
-
elif not hbd(mol) <= 3:
|
318 |
-
return False
|
319 |
-
elif not hba(mol) <= 3:
|
320 |
-
return False
|
321 |
-
elif not rotatable_bond(mol) <= 3:
|
322 |
-
return False
|
323 |
-
else:
|
324 |
-
return True
|
325 |
-
|
326 |
-
|
327 |
-
# def smarts_filter():
|
328 |
-
# alerts = Chem.MolFromSmarts("enter one smart here")
|
329 |
-
# detected_alerts = []
|
330 |
-
# for smiles in data['X1']:
|
331 |
-
# mol = Chem.MolFromSmiles(smiles)
|
332 |
-
# detected_alerts.append(mol.HasSubstructMatch(alerts))
|
333 |
-
|
334 |
-
|
335 |
-
SCORE_MAP = {
|
336 |
-
'SAscore': sa_score,
|
337 |
-
'LogP': logp,
|
338 |
-
'Molecular Weight': mw,
|
339 |
-
'Number of Heavy Atoms': heavy_atom,
|
340 |
-
'Molar Refractivity': mr,
|
341 |
-
'H-Bond Donor Count': hbd,
|
342 |
-
'H-Bond Acceptor Count': hba,
|
343 |
-
'Rotatable Bond Count': rotatable_bond,
|
344 |
-
'Topological Polar Surface Area': tpsa,
|
345 |
-
}
|
346 |
-
|
347 |
-
FILTER_MAP = {
|
348 |
-
# TODO support number_of_violations
|
349 |
-
'REOS': reos,
|
350 |
-
"Lipinski's Rule of Five": lipinski,
|
351 |
-
'Ghose': ghose,
|
352 |
-
'Rule of Three': rule_of_three,
|
353 |
-
'Veber': veber,
|
354 |
-
# 'PAINS': pains,
|
355 |
-
}
|
356 |
-
|
357 |
-
TASK_MAP = {
|
358 |
-
'Compound-protein interaction': 'DTI',
|
359 |
-
'Compound-protein binding affinity': 'DTA',
|
360 |
-
}
|
361 |
-
|
362 |
-
TASK_METRIC_MAP = {
|
363 |
-
'DTI': 'AUROC',
|
364 |
-
'DTA': 'CI',
|
365 |
-
}
|
366 |
-
|
367 |
-
PRESET_MAP = {
|
368 |
-
'DeepDTA': 'deep_dta',
|
369 |
-
'DeepConvDTI': 'deep_conv_dti',
|
370 |
-
'GraphDTA': 'graph_dta',
|
371 |
-
'MGraphDTA': 'm_graph_dta',
|
372 |
-
'HyperAttentionDTI': 'hyper_attention_dti',
|
373 |
-
'MolTrans': 'mol_trans',
|
374 |
-
'TransformerCPI': 'transformer_cpi',
|
375 |
-
'TransformerCPI2': 'transformer_cpi_2',
|
376 |
-
'DrugBAN': 'drug_ban',
|
377 |
-
'DrugVQA-Seq': 'drug_vqa'
|
378 |
-
}
|
379 |
-
|
380 |
-
TARGET_FAMILY_MAP = {
|
381 |
-
'General': 'general',
|
382 |
-
'Kinase': 'kinase',
|
383 |
-
'Non-Kinase Enzyme': 'non_kinase_enzyme',
|
384 |
-
'Membrane Receptor': 'membrane_receptor',
|
385 |
-
'Nuclear Receptor': 'nuclear_receptor',
|
386 |
-
'Ion Channel': 'ion_channel',
|
387 |
-
'Others': 'others',
|
388 |
-
}
|
389 |
-
|
390 |
-
TARGET_LIBRARY_MAP = {
|
391 |
-
'DrugBank (Human)': 'drugbank_targets.csv',
|
392 |
-
'ChEMBL33 (Human)': 'ChEMBL33_human_proteins.csv',
|
393 |
-
}
|
394 |
-
|
395 |
-
DRUG_LIBRARY_MAP = {
|
396 |
-
'DrugBank (Human)': 'drugbank_compounds.csv',
|
397 |
-
'Drug Repurposing Hub': 'drug_repurposing_hub.csv'
|
398 |
-
}
|
399 |
-
|
400 |
-
COLUMN_ALIASES = {
|
401 |
-
'X1': 'Compound SMILES',
|
402 |
-
'X2': 'Target FASTA',
|
403 |
-
'ID1': 'Compound ID',
|
404 |
-
'ID2': 'Target ID',
|
405 |
-
'Y': 'Actual CPI/CPA',
|
406 |
-
'Y^': 'Predicted CPI/CPA',
|
407 |
-
}
|
408 |
-
|
409 |
-
|
410 |
-
def validate_columns(df, mandatory_cols):
|
411 |
-
missing_cols = [col for col in mandatory_cols if col not in df.columns]
|
412 |
-
if missing_cols:
|
413 |
-
error_message = (f"The following mandatory columns are missing "
|
414 |
-
f"in the uploaded dataset: {str(mandatory_cols).strip('[]')}.")
|
415 |
-
raise ValueError(error_message)
|
416 |
-
else:
|
417 |
-
return
|
418 |
-
|
419 |
-
|
420 |
-
def process_target_fasta(sequence):
|
421 |
-
try:
|
422 |
-
if sequence:
|
423 |
-
lines = sequence.strip().split("\n")
|
424 |
-
if lines[0].startswith(">"):
|
425 |
-
lines = lines[1:]
|
426 |
-
return ''.join(lines).split(">")[0]
|
427 |
-
# record = list(SeqIO.parse(io.StringIO(sequence), "fasta"))[0]
|
428 |
-
# return str(record.seq)
|
429 |
-
else:
|
430 |
-
raise ValueError('Empty FASTA sequence.')
|
431 |
-
except Exception as e:
|
432 |
-
raise gr.Error(f'Failed to process FASTA due to error: {str(e)}')
|
433 |
-
|
434 |
-
|
435 |
-
def send_email(receiver, msg):
|
436 |
-
pass
|
437 |
-
|
438 |
-
|
439 |
-
def submit_predict(predict_filepath, task, preset, target_family, flag, state, progress=gr.Progress(track_tqdm=True)):
|
440 |
-
if flag:
|
441 |
-
try:
|
442 |
-
job_id = flag
|
443 |
-
global COLUMN_ALIASES
|
444 |
-
task = TASK_MAP[task]
|
445 |
-
if not preset:
|
446 |
-
raise gr.Error('Please select a model.')
|
447 |
-
preset = PRESET_MAP[preset]
|
448 |
-
target_family = TARGET_FAMILY_MAP[target_family]
|
449 |
-
# email_hash = hashlib.sha256(email.encode()).hexdigest()
|
450 |
-
COLUMN_ALIASES.update({
|
451 |
-
'Y': 'Actual Interaction Probability' if task == 'DTI' else 'Actual Binding Affinity',
|
452 |
-
'Y^': 'Predicted Interaction Probability' if task == 'DTI' else 'Predicted Binding Affinity'
|
453 |
-
})
|
454 |
-
|
455 |
-
# target_family_list = [target_family]
|
456 |
-
# for family in target_family_list:
|
457 |
-
|
458 |
-
# try:
|
459 |
-
prediction_df = pd.DataFrame()
|
460 |
-
with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
|
461 |
-
cfg = hydra.compose(
|
462 |
-
config_name="webserver_inference",
|
463 |
-
overrides=[f"task={task}",
|
464 |
-
f"preset={preset}",
|
465 |
-
f"ckpt_path=resources/checkpoints/{preset}-{task}-{target_family}.ckpt",
|
466 |
-
f"data.data_file='{str(predict_filepath)}'"])
|
467 |
-
|
468 |
-
predictions, _ = predict(cfg)
|
469 |
-
predictions = [pd.DataFrame(prediction) for prediction in predictions]
|
470 |
-
prediction_df = pd.concat([prediction_df, pd.concat(predictions, ignore_index=True)])
|
471 |
-
prediction_df.set_index('N', inplace=True)
|
472 |
-
orig_df = pd.read_csv(
|
473 |
-
predict_filepath,
|
474 |
-
usecols=lambda x: x not in ['X1', 'ID1', 'Compound', 'Scaffold', 'Scaffold SMILES',
|
475 |
-
'X2', 'ID2',
|
476 |
-
'Y', 'Y^']
|
477 |
-
)
|
478 |
-
prediction_df = pd.merge(prediction_df, orig_df, left_index=True, right_index=True, how='left')
|
479 |
-
|
480 |
-
predictions_file = f'temp/{job_id}_predictions.csv'
|
481 |
-
prediction_df.to_csv(predictions_file)
|
482 |
-
|
483 |
-
return {file_for_report: predictions_file,
|
484 |
-
run_state: False,
|
485 |
-
report_upload_flag: False}
|
486 |
-
except Exception as e:
|
487 |
-
gr.Warning(f"Prediction job failed due to error: {str(e)}")
|
488 |
-
return {run_state: False}
|
489 |
-
else:
|
490 |
-
return {run_state: state}
|
491 |
-
#
|
492 |
-
# except Exception as e:
|
493 |
-
# raise gr.Error(str(e))
|
494 |
-
|
495 |
-
# email_lock = Path(f"outputs/{email_hash}.lock")
|
496 |
-
# with open(email_lock, "w") as file:
|
497 |
-
# record = {
|
498 |
-
# "email": email,
|
499 |
-
# "job_id": job_id
|
500 |
-
# }
|
501 |
-
# json.dump(record, file)
|
502 |
-
# def run_predict():
|
503 |
-
# TODO per-user submit usage
|
504 |
-
# # email_lock = Path(f"outputs/{email_hash}.lock")
|
505 |
-
# # with open(email_lock, "w") as file:
|
506 |
-
# # record = {
|
507 |
-
# # "email": email,
|
508 |
-
# # "job_id": job_id
|
509 |
-
# # }
|
510 |
-
# # json.dump(record, file)
|
511 |
-
#
|
512 |
-
# job_lock = DATA_PATH / f"outputs/{job_id}.lock"
|
513 |
-
# with open(job_lock, "w") as file:
|
514 |
-
# pass
|
515 |
-
#
|
516 |
-
# try:
|
517 |
-
# prediction_df = pd.DataFrame()
|
518 |
-
# for family in target_family_list:
|
519 |
-
# with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
|
520 |
-
# cfg = hydra.compose(
|
521 |
-
# config_name="webserver_inference",
|
522 |
-
# overrides=[f"task={task}",
|
523 |
-
# f"preset={preset}",
|
524 |
-
# f"ckpt_path=resources/checkpoints/{preset}-{task}-{family}.ckpt",
|
525 |
-
# f"data.data_file='{str(predict_dataset)}'"])
|
526 |
-
#
|
527 |
-
# predictions, _ = predict(cfg)
|
528 |
-
# predictions = [pd.DataFrame(prediction) for prediction in predictions]
|
529 |
-
# prediction_df = pd.concat([prediction_df, pd.concat(predictions, ignore_index=True)])
|
530 |
-
# prediction_df.to_csv(f'outputs/{job_id}.csv')
|
531 |
-
# # email_lock.unlink()
|
532 |
-
# job_lock.unlink()
|
533 |
-
#
|
534 |
-
# msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) completed successfully. You may retrieve the '
|
535 |
-
# f'results and generate an analytical report at {URL} using the job id within 48 hours.')
|
536 |
-
# gr.Info(msg)
|
537 |
-
# except Exception as e:
|
538 |
-
# msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) failed due to an error: "{str(e)}." You may '
|
539 |
-
# f'reach out to the author about the error through email ([email protected]).')
|
540 |
-
# raise gr.Error(str(e))
|
541 |
-
# finally:
|
542 |
-
# send_email(email, msg)
|
543 |
-
#
|
544 |
-
# # Run "predict" asynchronously
|
545 |
-
# threading.Thread(target=run_predict).start()
|
546 |
-
#
|
547 |
-
# msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) started running. You may retrieve the results '
|
548 |
-
# f'and generate an analytical report at {URL} using the job id once the job is done. Only one job '
|
549 |
-
# f'per user is allowed at the same time.')
|
550 |
-
# send_email(email, msg)
|
551 |
-
|
552 |
-
# # Return the job id first
|
553 |
-
# return [
|
554 |
-
# gr.Blocks(visible=False),
|
555 |
-
# gr.Markdown(f"Your prediction job is running... "
|
556 |
-
# f"You may stay on this page or come back later to retrieve the results "
|
557 |
-
# f"Once you receive our email notification."),
|
558 |
-
# ]
|
559 |
-
|
560 |
-
|
561 |
-
def update_df(file, progress=gr.Progress(track_tqdm=True)):
|
562 |
-
# global DF_FOR_REPORT
|
563 |
-
if file and Path(file).is_file():
|
564 |
-
df = pd.read_csv(file)
|
565 |
-
if 'N' in df.columns:
|
566 |
-
df.set_index('N', inplace=True)
|
567 |
-
if not any(col in ['X1', 'X2'] for col in df.columns):
|
568 |
-
gr.Warning("At least one of columns `X1` and `X2` must be in the uploaded dataset.")
|
569 |
-
return {analyze_btn: gr.Button(interactive=False)}
|
570 |
-
# if df['X1'].nunique() > 1:
|
571 |
-
if 'X1' in df.columns:
|
572 |
-
df['Scaffold SMILES'] = df['X1'].swifter.progress_bar(
|
573 |
-
desc=f"Calculating scaffold...").apply(MurckoScaffold.MurckoScaffoldSmilesFromSmiles)
|
574 |
-
df['Scaffold'] = df['Scaffold SMILES'].swifter.progress_bar(
|
575 |
-
desc='Generating scaffold graphs...').apply(
|
576 |
-
lambda smiles: _MolPlusFingerprint(Chem.MolFromSmiles(smiles)))
|
577 |
-
# Add a new column with RDKit molecule objects
|
578 |
-
if 'Compound' not in df.columns or df['Compound'].dtype != 'object':
|
579 |
-
df['Compound'] = df['X1'].swifter.progress_bar(
|
580 |
-
desc='Generating molecular graphs...').apply(
|
581 |
-
lambda smiles: _MolPlusFingerprint(Chem.MolFromSmiles(smiles)))
|
582 |
-
|
583 |
-
# DF_FOR_REPORT = df.copy()
|
584 |
-
|
585 |
-
# pie_chart = None
|
586 |
-
# value = None
|
587 |
-
# if 'Y^' in DF_FOR_REPORT.columns:
|
588 |
-
# value = 'Y^'
|
589 |
-
# elif 'Y' in DF_FOR_REPORT.columns:
|
590 |
-
# value = 'Y'
|
591 |
-
|
592 |
-
# if value:
|
593 |
-
# if DF_FOR_REPORT['X1'].nunique() > 1 >= DF_FOR_REPORT['X2'].nunique():
|
594 |
-
# pie_chart = create_pie_chart(DF_FOR_REPORT, category='Scaffold SMILES', value=value, top_k=100)
|
595 |
-
# elif DF_FOR_REPORT['X2'].nunique() > 1 >= DF_FOR_REPORT['X1'].nunique():
|
596 |
-
# pie_chart = create_pie_chart(DF_FOR_REPORT, category='Target family', value=value, top_k=100)
|
597 |
-
|
598 |
-
return {html_report: create_html_report(df),
|
599 |
-
raw_df: df,
|
600 |
-
report_df: df.copy(),
|
601 |
-
analyze_btn: gr.Button(interactive=True)} # pie_chart
|
602 |
-
else:
|
603 |
-
return {analyze_btn: gr.Button(interactive=False)}
|
604 |
-
|
605 |
-
|
606 |
-
def create_html_report(df, file=None, task=None, progress=gr.Progress(track_tqdm=True)):
|
607 |
-
df_html = df.copy(deep=True)
|
608 |
-
# email_hash = hashlib.sha256(email.encode()).hexdigest()
|
609 |
-
|
610 |
-
cols_left = list(pd.Index(
|
611 |
-
['ID1', 'Compound', 'Scaffold', 'Scaffold SMILES', 'ID2', 'Y', 'Y^']).intersection(df_html.columns))
|
612 |
-
cols_right = list(pd.Index(['X1', 'X2']).intersection(df_html.columns))
|
613 |
-
df_html = df_html[cols_left + (df_html.columns.drop(cols_left + cols_right).tolist()) + cols_right]
|
614 |
-
|
615 |
-
if isinstance(task, str):
|
616 |
-
task = TASK_MAP[task]
|
617 |
-
COLUMN_ALIASES.update({
|
618 |
-
'Y': 'Actual Interaction Probability' if task == 'DTI' else 'Actual Binding Affinity',
|
619 |
-
'Y^': 'Predicted Interaction Probability' if task == 'DTI' else 'Predicted Binding Affinity'
|
620 |
-
})
|
621 |
-
|
622 |
-
ascending = True if COLUMN_ALIASES['Y^'] == 'Predicted Binding Affinity' else False
|
623 |
-
df_html = df_html.sort_values(
|
624 |
-
[col for col in ['Y', 'Y^'] if col in df_html.columns], ascending=ascending
|
625 |
-
)
|
626 |
-
|
627 |
-
if not file:
|
628 |
-
df_html = df_html.iloc[:31]
|
629 |
-
|
630 |
-
# Remove repeated info for one-against-N tasks to save visual and physical space
|
631 |
-
job = 'Chemical Property'
|
632 |
-
unique_entity = 'Unique Entity'
|
633 |
-
unique_df = None
|
634 |
-
category = None
|
635 |
-
columns_unique = None
|
636 |
-
if 'X1' in df_html.columns and 'X2' in df_html.columns:
|
637 |
-
n_compound = df_html['X1'].nunique()
|
638 |
-
n_protein = df_html['X2'].nunique()
|
639 |
-
|
640 |
-
if n_compound == 1 and n_protein >= 2:
|
641 |
-
unique_entity = 'Compound of Interest'
|
642 |
-
if any(col in df_html.columns for col in ['Y^', 'Y']):
|
643 |
-
job = 'Target Protein Identification'
|
644 |
-
category = 'Target Family'
|
645 |
-
columns_unique = df_html.columns.isin(['X1', 'ID1', 'Scaffold', 'Compound', 'Scaffold SMILES']
|
646 |
-
+ list(FILTER_MAP.keys()) + list(SCORE_MAP.keys()))
|
647 |
-
|
648 |
-
elif n_compound >= 2 and n_protein == 1:
|
649 |
-
unique_entity = 'Target of Interest'
|
650 |
-
if any(col in df_html.columns for col in ['Y^', 'Y']):
|
651 |
-
job = 'Drug Hit Screening'
|
652 |
-
category = 'Scaffold SMILES'
|
653 |
-
columns_unique = df_html.columns.isin(['X2', 'ID2'])
|
654 |
-
|
655 |
-
elif 'Y^' in df_html.columns:
|
656 |
-
job = 'Interaction Pair Inference'
|
657 |
-
if 'Compound' in df_html.columns:
|
658 |
-
df_html['Compound'] = df_html['Compound'].swifter.progress_bar(
|
659 |
-
desc='Generating compound graph...').apply(
|
660 |
-
lambda x: PandasTools.PrintAsImageString(x) if not pd.isna(x) else x)
|
661 |
-
if 'Scaffold' in df_html.columns:
|
662 |
-
df_html['Scaffold'] = df_html['Scaffold'].swifter.progress_bar(
|
663 |
-
desc='Generating scaffold graph...').apply(
|
664 |
-
lambda x: PandasTools.PrintAsImageString(x) if not pd.isna(x) else x)
|
665 |
-
|
666 |
-
df_html.rename(columns=COLUMN_ALIASES, inplace=True)
|
667 |
-
df_html.index.name = 'Index'
|
668 |
-
if 'Target FASTA' in df_html.columns:
|
669 |
-
df_html['Target FASTA'] = df_html['Target FASTA'].swifter.progress_bar(
|
670 |
-
desc='Processing FASTA...').apply(
|
671 |
-
lambda x: wrap_text(x) if not pd.isna(x) else x)
|
672 |
-
|
673 |
-
num_cols = df_html.select_dtypes('number').columns
|
674 |
-
num_col_colors = sns.color_palette('husl', len(num_cols))
|
675 |
-
bool_cols = df_html.select_dtypes(bool).columns
|
676 |
-
bool_col_colors = {True: 'lightgreen', False: 'lightpink'}
|
677 |
-
|
678 |
-
if columns_unique is not None:
|
679 |
-
unique_df = df_html.loc[:, columns_unique].iloc[[0]].copy()
|
680 |
-
df_html = df_html.loc[:, ~columns_unique]
|
681 |
-
|
682 |
-
if not file:
|
683 |
-
if 'Compound ID' in df_html.columns:
|
684 |
-
df_html.drop(['Compound SMILES'], axis=1, inplace=True)
|
685 |
-
if 'Target ID' in df_html.columns:
|
686 |
-
df_html.drop(['Target FASTA'], axis=1, inplace=True)
|
687 |
-
if 'Target FASTA' in df_html.columns:
|
688 |
-
df_html['Target FASTA'] = df_html['Target FASTA'].swifter.progress_bar(
|
689 |
-
desc='Processing FASTA...').apply(
|
690 |
-
lambda x: wrap_text(x) if not pd.isna(x) else x)
|
691 |
-
if 'Scaffold SMILES' in df_html.columns:
|
692 |
-
df_html.drop(['Scaffold SMILES'], axis=1, inplace=True)
|
693 |
-
styled_df = df_html.style.format(precision=3)
|
694 |
-
|
695 |
-
for i, col in enumerate(num_cols):
|
696 |
-
if col in df_html.columns:
|
697 |
-
if col not in ['Predicted Binding Affinity', 'Actual Binding Affinity']:
|
698 |
-
styled_df = styled_df.background_gradient(
|
699 |
-
subset=[col], cmap=sns.light_palette(num_col_colors[i], as_cmap=True))
|
700 |
-
else:
|
701 |
-
styled_df = styled_df.background_gradient(
|
702 |
-
subset=[col], cmap=sns.light_palette(num_col_colors[i], as_cmap=True).reversed())
|
703 |
-
|
704 |
-
if any(df_html.columns.isin(bool_cols)):
|
705 |
-
styled_df.applymap(lambda val: f'background-color: {bool_col_colors[val]}', subset=bool_cols)
|
706 |
-
|
707 |
-
table_html = styled_df.to_html()
|
708 |
-
unique_html = ''
|
709 |
-
if unique_df is not None:
|
710 |
-
if 'Target FASTA' in unique_df.columns:
|
711 |
-
unique_df['Target FASTA'] = unique_df['Target FASTA'].str.replace('\n', '<br>')
|
712 |
-
if any(unique_df.columns.isin(bool_cols)):
|
713 |
-
unique_df = unique_df.style.applymap(
|
714 |
-
lambda val: f"background-color: {bool_col_colors[val]}", subset=bool_cols)
|
715 |
-
unique_html = (f'<div style="font-family: Courier !important;">'
|
716 |
-
f'{unique_df.to_html(escape=False, index=False)}</div>')
|
717 |
-
|
718 |
-
return (f'<div style="font-size: 16px; font-weight: bold;">{job} Report Preview (Top 30 Records)</div>'
|
719 |
-
f'<div style="overflow-x:auto; font-family: Courier !important;">{unique_html}</div>'
|
720 |
-
f'<div style="overflow:auto; height: 300px; font-family: Courier !important;">{table_html}</div>')
|
721 |
-
|
722 |
-
else:
|
723 |
-
bool_formatters = {col: BooleanFormatter() for col in bool_cols}
|
724 |
-
float_formatters = {col: NumberFormatter(format='0.000') for col in df_html.select_dtypes('floating').columns}
|
725 |
-
other_formatters = {
|
726 |
-
'Predicted Interaction Probability': {'type': 'progress', 'max': 1.0, 'legend': True},
|
727 |
-
'Actual Interaction Probability': {'type': 'progress', 'max': 1.0, 'legend': True},
|
728 |
-
'Compound': HTMLTemplateFormatter(template='<div class="image-zoom-viewer"><%= value %></div>'),
|
729 |
-
'Scaffold': HTMLTemplateFormatter(template='<div class="image-zoom-viewer"><%= value %></div>'),
|
730 |
-
'Target FASTA': {'type': 'textarea', 'width': 60},
|
731 |
-
'Target ID': HTMLTemplateFormatter(
|
732 |
-
template='<a href="<% '
|
733 |
-
'if (/^[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}$/.test(value)) '
|
734 |
-
'{ %>https://www.uniprot.org/uniprotkb/<%= value %><% } '
|
735 |
-
'else { %>https://www.uniprot.org/uniprotkb?query=<%= value %><% } '
|
736 |
-
'%>" target="_blank"><%= value %></a>'),
|
737 |
-
'Compound ID': HTMLTemplateFormatter(
|
738 |
-
template='<a href="https://pubchem.ncbi.nlm.nih.gov/compound/<%= value %>" '
|
739 |
-
'target="_blank"><%= value %></a>')
|
740 |
-
}
|
741 |
-
formatters = {**bool_formatters, **float_formatters, **other_formatters}
|
742 |
-
|
743 |
-
# html = df.to_html(file)
|
744 |
-
# return html
|
745 |
-
|
746 |
-
report_table = pn.widgets.Tabulator(
|
747 |
-
df_html, formatters=formatters,
|
748 |
-
frozen_columns=['Index', 'Target ID', 'Compound ID', 'Compound', 'Scaffold'],
|
749 |
-
disabled=True, sizing_mode='stretch_both', pagination='local', page_size=30)
|
750 |
-
|
751 |
-
for i, col in enumerate(num_cols):
|
752 |
-
if col not in ['Predicted Binding Affinity', 'Actual Binding Affinity']:
|
753 |
-
if col not in ['Predicted Interaction Probability', 'Actual Interaction Probability']:
|
754 |
-
report_table.style.background_gradient(
|
755 |
-
subset=df_html.columns == col, cmap=sns.light_palette(num_col_colors[i], as_cmap=True))
|
756 |
-
else:
|
757 |
-
continue
|
758 |
-
else:
|
759 |
-
report_table.style.background_gradient(
|
760 |
-
subset=df_html.columns == col, cmap=sns.light_palette(num_col_colors[i], as_cmap=True).reversed())
|
761 |
-
|
762 |
-
pie_charts = {}
|
763 |
-
for y in df_html.columns.intersection(['Predicted Interaction Probability', 'Actual Interaction Probability',
|
764 |
-
'Predicted Binding Affinity', 'Actual Binding Affinity']):
|
765 |
-
pie_charts[y] = []
|
766 |
-
for k in [10, 30, 100]:
|
767 |
-
if k < len(df_html):
|
768 |
-
pie_charts[y].append(create_pie_chart(df_html, category=category, value=y, top_k=k))
|
769 |
-
pie_charts[y].append(create_pie_chart(df_html, category=category, value=y, top_k=len(df_html)))
|
770 |
-
|
771 |
-
# Remove keys with empty values
|
772 |
-
pie_charts = {k: v for k, v in pie_charts.items() if any(v)}
|
773 |
-
|
774 |
-
pn_css = """
|
775 |
-
.tabulator {
|
776 |
-
font-family: Courier New !important;
|
777 |
-
font-weight: normal !important;
|
778 |
-
font-size: 12px !important;
|
779 |
-
}
|
780 |
-
|
781 |
-
.tabulator-cell {
|
782 |
-
overflow: visible !important;
|
783 |
-
}
|
784 |
-
|
785 |
-
.tabulator-cell:hover {
|
786 |
-
z-index: 1000 !important;
|
787 |
-
}
|
788 |
-
|
789 |
-
.tabulator-cell.tabulator-frozen:hover {
|
790 |
-
z-index: 1000 !important;
|
791 |
-
}
|
792 |
-
|
793 |
-
.image-zoom-viewer {
|
794 |
-
display: inline-block;
|
795 |
-
overflow: visible;
|
796 |
-
z-index: 1000;
|
797 |
-
}
|
798 |
-
|
799 |
-
.image-zoom-viewer::after {
|
800 |
-
content: "";
|
801 |
-
top: 0;
|
802 |
-
left: 0;
|
803 |
-
width: 100%;
|
804 |
-
height: 100%;
|
805 |
-
pointer-events: none;
|
806 |
-
}
|
807 |
-
|
808 |
-
.image-zoom-viewer:hover::after {
|
809 |
-
pointer-events: all;
|
810 |
-
}
|
811 |
-
|
812 |
-
/* When hovering over the container, scale its child (the SVG) */
|
813 |
-
.tabulator-cell:hover .image-zoom-viewer svg {
|
814 |
-
padding: 3px;
|
815 |
-
position: absolute;
|
816 |
-
background-color: rgba(250, 250, 250, 0.854);
|
817 |
-
box-shadow: 0 0 10px rgba(0, 0, 0, 0.618);
|
818 |
-
border-radius: 3px;
|
819 |
-
transform: scale(3); /* Scale up the SVG */
|
820 |
-
transition: transform 0.3s ease;
|
821 |
-
pointer-events: none; /* Prevents the SVG from blocking mouse interactions */
|
822 |
-
z-index: 1000;
|
823 |
-
}
|
824 |
-
|
825 |
-
.image-zoom-viewer svg {
|
826 |
-
display: block; /* SVG is a block-level element for proper scaling */
|
827 |
-
z-index: 1000;
|
828 |
-
}
|
829 |
-
|
830 |
-
.image-zoom-viewer:hover {
|
831 |
-
z-index: 1000;
|
832 |
-
}
|
833 |
-
|
834 |
-
"""
|
835 |
-
|
836 |
-
pn.extension(raw_css=[pn_css])
|
837 |
-
|
838 |
-
template = pn.template.VanillaTemplate(
|
839 |
-
title=f'DeepSEQreen {job} Report',
|
840 |
-
sidebar=[],
|
841 |
-
favicon='deepseqreen.svg',
|
842 |
-
logo='deepseqreen.svg',
|
843 |
-
header_background='#F3F5F7',
|
844 |
-
header_color='#4372c4',
|
845 |
-
busy_indicator=None,
|
846 |
-
)
|
847 |
-
|
848 |
-
stats_pane = pn.Row()
|
849 |
-
if unique_df is not None:
|
850 |
-
unique_table = pn.widgets.Tabulator(unique_df, formatters=formatters, sizing_mode='stretch_width',
|
851 |
-
show_index=False, disabled=True,
|
852 |
-
frozen_columns=['Compound ID', 'Compound', 'Scaffold'])
|
853 |
-
# if pie_charts:
|
854 |
-
# unique_table.width = 640
|
855 |
-
stats_pane.append(pn.Column(f'### {unique_entity}', unique_table))
|
856 |
-
if pie_charts:
|
857 |
-
for score_name, figure_list in pie_charts.items():
|
858 |
-
stats_pane.append(
|
859 |
-
pn.Column(f'### {category} by Top {score_name}',
|
860 |
-
pn.Tabs(*figure_list, tabs_location='above'))
|
861 |
-
# pn.Card(pn.Row(v), title=f'{category} by Top {k}')
|
862 |
-
)
|
863 |
-
|
864 |
-
if stats_pane:
|
865 |
-
template.main.append(pn.Card(stats_pane,
|
866 |
-
sizing_mode='stretch_width', title='Summary Statistics', margin=10))
|
867 |
-
|
868 |
-
template.main.append(
|
869 |
-
pn.Card(report_table, title=f'{job} Results', # width=1200,
|
870 |
-
margin=10)
|
871 |
-
)
|
872 |
-
|
873 |
-
template.save(file, resources=INLINE)
|
874 |
-
return file
|
875 |
-
|
876 |
-
|
877 |
-
def create_pie_chart(df, category, value, top_k):
|
878 |
-
if category not in df or value not in df:
|
879 |
-
return
|
880 |
-
top_k_df = df.nlargest(top_k, value)
|
881 |
-
category_counts = top_k_df[category].value_counts()
|
882 |
-
data = pd.DataFrame({category: category_counts.index, 'value': category_counts.values})
|
883 |
-
|
884 |
-
data['proportion'] = data['value'] / data['value'].sum()
|
885 |
-
# Merge rows with proportion less than 0.2% into one row
|
886 |
-
mask = data['proportion'] < 0.002
|
887 |
-
if any(mask):
|
888 |
-
merged_row = data[mask].sum()
|
889 |
-
merged_row[category] = '...'
|
890 |
-
data = pd.concat([data[~mask], pd.DataFrame(merged_row).T])
|
891 |
-
data['angle'] = data['proportion'] * 2 * pi
|
892 |
-
|
893 |
-
color_dict = {cat: color for cat, color in
|
894 |
-
zip(df[category].unique(),
|
895 |
-
(Category20c_20 * (len(df[category].unique()) // 20 + 1))[:len(df[category].unique())])}
|
896 |
-
color_dict['...'] = '#636363'
|
897 |
-
data['color'] = data[category].map(color_dict)
|
898 |
-
|
899 |
-
tooltips = [
|
900 |
-
(f"{category}", f"@{{{category}}}"),
|
901 |
-
("Count", "@value"),
|
902 |
-
("Percentage", "@proportion{0.0%}")
|
903 |
-
]
|
904 |
-
|
905 |
-
if category == 'Scaffold SMILES':
|
906 |
-
data = data.merge(top_k_df[['Scaffold SMILES', 'Scaffold']].drop_duplicates(), how='left',
|
907 |
-
left_on='Scaffold SMILES', right_on='Scaffold SMILES')
|
908 |
-
tooltips.append(("Scaffold", "<div>@{Scaffold}{safe}</div>"))
|
909 |
-
p = figure(height=384, width=960, name=f"Top {top_k}" if top_k < len(df) else 'All', sizing_mode='stretch_height',
|
910 |
-
toolbar_location=None, tools="hover", tooltips=tooltips, x_range=(-0.4, 0.4))
|
911 |
-
|
912 |
-
def truncate_label(label, max_length=60):
|
913 |
-
return label if len(label) <= max_length else label[:max_length] + "..."
|
914 |
-
|
915 |
-
data['legend_field'] = data[category].apply(truncate_label)
|
916 |
-
|
917 |
-
p.add_layout(Legend(padding=0, margin=0), 'right')
|
918 |
-
p.wedge(x=0, y=1, radius=0.3,
|
919 |
-
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
|
920 |
-
line_color="white", fill_color='color', legend_field='legend_field', source=data)
|
921 |
-
|
922 |
-
# Limit the number of legend items to 20 and add "..." if there are more than 20 items
|
923 |
-
if len(p.legend.items) > 20:
|
924 |
-
new_legend_items = p.legend.items[:20]
|
925 |
-
new_legend_items.append(LegendItem(label="..."))
|
926 |
-
p.legend.items = new_legend_items
|
927 |
-
|
928 |
-
p.legend.label_text_font_size = "10pt"
|
929 |
-
p.legend.label_text_font="courier"
|
930 |
-
p.axis.axis_label = None
|
931 |
-
p.axis.visible = False
|
932 |
-
p.grid.grid_line_color = None
|
933 |
-
p.outline_line_width = 0
|
934 |
-
p.min_border = 0
|
935 |
-
p.margin = 0
|
936 |
-
|
937 |
-
return p
|
938 |
-
|
939 |
-
|
940 |
-
def submit_report(df, score_list, filter_list, task, progress=gr.Progress(track_tqdm=True)):
|
941 |
-
df_report = df.copy()
|
942 |
-
try:
|
943 |
-
for filter_name in filter_list:
|
944 |
-
df_report[filter_name] = df_report['Compound'].swifter.progress_bar(
|
945 |
-
desc=f"Calculating {filter_name}").apply(
|
946 |
-
lambda x: FILTER_MAP[filter_name](x) if not pd.isna(x) else x)
|
947 |
-
|
948 |
-
for score_name in score_list:
|
949 |
-
df_report[score_name] = df_report['Compound'].swifter.progress_bar(
|
950 |
-
desc=f"Calculating {score_name}").apply(
|
951 |
-
lambda x: SCORE_MAP[score_name](x) if not pd.isna(x) else x)
|
952 |
-
|
953 |
-
# pie_chart = None
|
954 |
-
# value = None
|
955 |
-
# if 'Y^' in df.columns:
|
956 |
-
# value = 'Y^'
|
957 |
-
# elif 'Y' in df.columns:
|
958 |
-
# value = 'Y'
|
959 |
-
#
|
960 |
-
# if value:
|
961 |
-
# if df['X1'].nunique() > 1 >= df['X2'].nunique():
|
962 |
-
# pie_chart = create_pie_chart(df, category='Scaffold SMILES', value=value, top_k=100)
|
963 |
-
# elif df['X2'].nunique() > 1 >= df['X1'].nunique():
|
964 |
-
# pie_chart = create_pie_chart(df, category='Target family', value=value, top_k=100)
|
965 |
-
|
966 |
-
return (create_html_report(df_report, file=None, task=task), df_report,
|
967 |
-
gr.File(visible=False), gr.File(visible=False))
|
968 |
-
|
969 |
-
except Exception as e:
|
970 |
-
gr.Warning(f'Failed to report results due to error: {str(e)}')
|
971 |
-
return None, None, None, None
|
972 |
-
|
973 |
-
|
974 |
-
# def check_job_status(job_id):
|
975 |
-
# job_lock = DATA_PATH / f"{job_id}.lock"
|
976 |
-
# job_file = DATA_PATH / f"{job_id}.csv"
|
977 |
-
# if job_lock.is_file():
|
978 |
-
# return {gr.Markdown(f"Your job ({job_id}) is still running... "
|
979 |
-
# f"You may stay on this page or come back later to retrieve the results "
|
980 |
-
# f"Once you receive our email notification."),
|
981 |
-
# None,
|
982 |
-
# None
|
983 |
-
# }
|
984 |
-
# elif job_file.is_file():
|
985 |
-
# return {gr.Markdown(f"Your job ({job_id}) is done! Redirecting you to generate reports..."),
|
986 |
-
# gr.Tabs(selected=3),
|
987 |
-
# gr.File(str(job_lock))}
|
988 |
-
|
989 |
-
|
990 |
-
def wrap_text(text, line_length=60):
|
991 |
-
if isinstance(text, str):
|
992 |
-
wrapper = textwrap.TextWrapper(width=line_length)
|
993 |
-
if text.startswith('>'):
|
994 |
-
sections = text.split('>')
|
995 |
-
wrapped_sections = []
|
996 |
-
for section in sections:
|
997 |
-
if not section:
|
998 |
-
continue
|
999 |
-
lines = section.split('\n')
|
1000 |
-
seq_header = lines[0]
|
1001 |
-
wrapped_seq = wrapper.fill(''.join(lines[1:]))
|
1002 |
-
wrapped_sections.append(f">{seq_header}\n{wrapped_seq}")
|
1003 |
-
return '\n'.join(wrapped_sections)
|
1004 |
-
else:
|
1005 |
-
return wrapper.fill(text)
|
1006 |
-
else:
|
1007 |
-
return text
|
1008 |
-
|
1009 |
-
|
1010 |
-
def unwrap_text(text):
|
1011 |
-
return text.strip.replece('\n', '')
|
1012 |
-
|
1013 |
-
|
1014 |
-
def drug_library_from_sdf(sdf_path):
|
1015 |
-
return PandasTools.LoadSDF(
|
1016 |
-
sdf_path,
|
1017 |
-
smilesName='X1', molColName='Compound', includeFingerprints=True
|
1018 |
-
)
|
1019 |
-
|
1020 |
-
|
1021 |
-
def process_target_library_upload(library_upload):
|
1022 |
-
if library_upload.endswith('.csv'):
|
1023 |
-
df = pd.read_csv(library_upload)
|
1024 |
-
elif library_upload.endswith('.fasta'):
|
1025 |
-
df = target_library_from_fasta(library_upload)
|
1026 |
-
else:
|
1027 |
-
raise gr.Error('Currently only CSV and FASTA files are supported as target libraries.')
|
1028 |
-
validate_columns(df, ['X2'])
|
1029 |
-
return df
|
1030 |
-
|
1031 |
-
|
1032 |
-
def process_drug_library_upload(library_upload):
|
1033 |
-
if library_upload.endswith('.csv'):
|
1034 |
-
df = pd.read_csv(library_upload)
|
1035 |
-
elif library_upload.endswith('.sdf'):
|
1036 |
-
df = drug_library_from_sdf(library_upload)
|
1037 |
-
else:
|
1038 |
-
raise gr.Error('Currently only CSV and SDF files are supported as drug libraries.')
|
1039 |
-
validate_columns(df, ['X1'])
|
1040 |
-
return df
|
1041 |
-
|
1042 |
-
|
1043 |
-
def target_library_from_fasta(fasta_path):
|
1044 |
-
records = list(SeqIO.parse(fasta_path, "fasta"))
|
1045 |
-
id2 = [record.id for record in records]
|
1046 |
-
seq = [str(record.seq) for record in records]
|
1047 |
-
df = pd.DataFrame({'ID2': id2, 'X2': seq})
|
1048 |
-
return df
|
1049 |
-
|
1050 |
-
|
1051 |
-
theme = gr.themes.Base(spacing_size="sm", text_size='md').set(
|
1052 |
-
background_fill_primary='#dfe6f0',
|
1053 |
-
background_fill_secondary='#dfe6f0',
|
1054 |
-
checkbox_label_background_fill='#dfe6f0',
|
1055 |
-
checkbox_label_background_fill_hover='#dfe6f0',
|
1056 |
-
checkbox_background_color='white',
|
1057 |
-
checkbox_border_color='#4372c4',
|
1058 |
-
border_color_primary='#4372c4',
|
1059 |
-
border_color_accent='#4372c4',
|
1060 |
-
button_primary_background_fill='#4372c4',
|
1061 |
-
button_primary_text_color='white',
|
1062 |
-
button_secondary_border_color='#4372c4',
|
1063 |
-
body_text_color='#4372c4',
|
1064 |
-
block_title_text_color='#4372c4',
|
1065 |
-
block_label_text_color='#4372c4',
|
1066 |
-
block_info_text_color='#505358',
|
1067 |
-
block_border_color=None,
|
1068 |
-
input_border_color='#4372c4',
|
1069 |
-
panel_border_color='#4372c4',
|
1070 |
-
input_background_fill='white',
|
1071 |
-
code_background_fill='white',
|
1072 |
-
)
|
1073 |
-
|
1074 |
-
with gr.Blocks(theme=theme, title='DeepSEQreen', css=CSS) as demo:
|
1075 |
-
run_state = gr.State(value=False)
|
1076 |
-
screen_flag = gr.State(value=False)
|
1077 |
-
identify_flag = gr.State(value=False)
|
1078 |
-
infer_flag = gr.State(value=False)
|
1079 |
-
report_upload_flag = gr.State(value=False)
|
1080 |
-
|
1081 |
-
with gr.Tabs() as tabs:
|
1082 |
-
with gr.TabItem(label='Drug Hit Screening', id=0):
|
1083 |
-
gr.Markdown('''
|
1084 |
-
# <center>Drug Hit Screening</center>
|
1085 |
-
<center>
|
1086 |
-
To predict interactions or binding affinities of a single target against a compound library.
|
1087 |
-
</center>
|
1088 |
-
''')
|
1089 |
-
with gr.Blocks() as screen_block:
|
1090 |
-
with gr.Column() as screen_page:
|
1091 |
-
with gr.Row():
|
1092 |
-
with gr.Column():
|
1093 |
-
HelpTip(
|
1094 |
-
"Enter (paste) a amino acid sequence below manually or upload a FASTA file. "
|
1095 |
-
"If multiple entities are in the FASTA, only the first will be used. "
|
1096 |
-
"Alternatively, enter a Uniprot ID or gene symbol with organism and click Query for "
|
1097 |
-
"the sequence."
|
1098 |
-
)
|
1099 |
-
target_input_type = gr.Dropdown(
|
1100 |
-
label='Step 1. Select Target Input Type and Input',
|
1101 |
-
choices=['Sequence', 'UniProt ID', 'Gene symbol'],
|
1102 |
-
info='Enter (paste) a FASTA string below manually or upload a FASTA file.',
|
1103 |
-
value='Sequence',
|
1104 |
-
scale=4, interactive=True
|
1105 |
-
)
|
1106 |
-
|
1107 |
-
with gr.Row():
|
1108 |
-
target_id = gr.Textbox(show_label=False, visible=False,
|
1109 |
-
interactive=True, scale=4,
|
1110 |
-
info='Enter a UniProt ID and query.')
|
1111 |
-
target_gene = gr.Textbox(
|
1112 |
-
show_label=False, visible=False,
|
1113 |
-
interactive=True, scale=4,
|
1114 |
-
info='Enter a gene symbol and query.')
|
1115 |
-
target_organism = gr.Textbox(
|
1116 |
-
info='Organism scientific name (default: Homo sapiens).',
|
1117 |
-
placeholder='Homo sapiens', show_label=False,
|
1118 |
-
visible=False, interactive=True, scale=4, )
|
1119 |
-
target_upload_btn = gr.UploadButton(label='Upload a FASTA File', type='binary',
|
1120 |
-
visible=True, variant='primary',
|
1121 |
-
size='lg')
|
1122 |
-
target_paste_markdown = gr.Button(value='OR Paste Your Sequence Below', visible=True)
|
1123 |
-
target_query_btn = gr.Button(value='Query the Sequence', variant='primary',
|
1124 |
-
visible=False, scale=4)
|
1125 |
-
# with gr.Row():
|
1126 |
-
# example_uniprot = gr.Button(value='Example: Q16539', elem_classes='example', visible=False)
|
1127 |
-
# example_gene = gr.Button(value='Example: MAPK14', elem_classes='example', visible=False)
|
1128 |
-
example_fasta = gr.Button(value='Example: MAPK14 (Q16539)', elem_classes='example')
|
1129 |
-
target_fasta = gr.Code(label='Input or Display FASTA', interactive=True, lines=5)
|
1130 |
-
# with gr.Row():
|
1131 |
-
# with gr.Column():
|
1132 |
-
# with gr.Column():
|
1133 |
-
# gr.File(label='Example FASTA file',
|
1134 |
-
# value='data/examples/MAPK14.fasta', interactive=False)
|
1135 |
-
|
1136 |
-
with gr.Row():
|
1137 |
-
with gr.Column():
|
1138 |
-
HelpTip(
|
1139 |
-
"Click Auto-detect to identify the protein family using sequence alignment. "
|
1140 |
-
"This optional step allows applying a family-specific model instead of a all-family "
|
1141 |
-
"model (general). "
|
1142 |
-
"Manually select general if the alignment results are unsatisfactory."
|
1143 |
-
)
|
1144 |
-
drug_screen_target_family = gr.Dropdown(
|
1145 |
-
choices=list(TARGET_FAMILY_MAP.keys()),
|
1146 |
-
value='General',
|
1147 |
-
label='Step 2. Select Target Family (Optional)', interactive=True)
|
1148 |
-
# with gr.Column(scale=1, min_width=24):
|
1149 |
-
|
1150 |
-
with gr.Row():
|
1151 |
-
with gr.Column():
|
1152 |
-
target_family_detect_btn = gr.Button(value='OR Let Us Auto-Detect for You',
|
1153 |
-
variant='primary')
|
1154 |
-
|
1155 |
-
with gr.Row():
|
1156 |
-
with gr.Column():
|
1157 |
-
HelpTip(
|
1158 |
-
"Select a preset compound library (e.g., DrugBank). "
|
1159 |
-
"Alternatively, upload a CSV file with a column named X1 containing compound SMILES, "
|
1160 |
-
"or use an SDF file (Max. 10,000 compounds per task). Example CSV and SDF files are "
|
1161 |
-
"provided below and can be downloaded by clicking the lower right corner."
|
1162 |
-
)
|
1163 |
-
drug_library = gr.Dropdown(label='Step 3. Select a Preset Compound Library',
|
1164 |
-
choices=list(DRUG_LIBRARY_MAP.keys()))
|
1165 |
-
with gr.Row():
|
1166 |
-
gr.File(label='Example SDF compound library',
|
1167 |
-
value='data/examples/compound_library.sdf', interactive=False)
|
1168 |
-
gr.File(label='Example CSV compound library',
|
1169 |
-
value='data/examples/compound_library.csv', interactive=False)
|
1170 |
-
drug_library_upload_btn = gr.UploadButton(
|
1171 |
-
label='OR Upload Your Own Library', variant='primary')
|
1172 |
-
drug_library_upload = gr.File(label='Custom compound library file', visible=False)
|
1173 |
-
with gr.Row():
|
1174 |
-
with gr.Column():
|
1175 |
-
HelpTip(
|
1176 |
-
"Interaction prediction provides you binding probability score between the target of "
|
1177 |
-
"interest and each compound in the library, "
|
1178 |
-
"while affinity prediction directly estimates their binding strength measured using "
|
1179 |
-
"IC50."
|
1180 |
-
)
|
1181 |
-
drug_screen_task = gr.Dropdown(
|
1182 |
-
list(TASK_MAP.keys()),
|
1183 |
-
label='Step 4. Select the Prediction Task You Want to Conduct',
|
1184 |
-
value='Compound-protein interaction')
|
1185 |
-
|
1186 |
-
with gr.Row():
|
1187 |
-
with gr.Column():
|
1188 |
-
HelpTip(
|
1189 |
-
"Select your preferred model, or click Recommend for the best-performing model based "
|
1190 |
-
"on the selected task, family, and whether the target was trained. "
|
1191 |
-
"Please refer to documentation for detailed benchamrk results."
|
1192 |
-
)
|
1193 |
-
drug_screen_preset = gr.Dropdown(list(PRESET_MAP.keys()),
|
1194 |
-
label='Step 5. Select a Preset Model')
|
1195 |
-
screen_preset_recommend_btn = gr.Button(
|
1196 |
-
value='OR Let Us Recommend for You', variant='primary')
|
1197 |
-
with gr.Row():
|
1198 |
-
with gr.Column():
|
1199 |
-
drug_screen_email = gr.Textbox(
|
1200 |
-
label='Step 6. Input Your Email Address (Optional)',
|
1201 |
-
info="Your email address will be used to notify you about the completion of your job."
|
1202 |
-
)
|
1203 |
-
|
1204 |
-
with gr.Row(visible=True):
|
1205 |
-
with gr.Column():
|
1206 |
-
# drug_screen_clr_btn = gr.ClearButton(size='lg')
|
1207 |
-
drug_screen_btn = gr.Button(value='SUBMIT THE SCREENING JOB', variant='primary', size='lg')
|
1208 |
-
# TODO Modify the pd df directly with df['X2'] = target
|
1209 |
-
|
1210 |
-
screen_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
|
1211 |
-
screen_waiting = gr.Markdown("""
|
1212 |
-
<center>Your job is running... It might take a few minutes.
|
1213 |
-
When it's done, you will be redirected to the report page.
|
1214 |
-
Meanwhile, please leave the page on.</center>
|
1215 |
-
""", visible=False)
|
1216 |
-
|
1217 |
-
with gr.TabItem(label='Target protein identification', id=1):
|
1218 |
-
gr.Markdown('''
|
1219 |
-
# <center>Target Protein Identification</center>
|
1220 |
-
|
1221 |
-
<center>
|
1222 |
-
To predict interactions or binding affinities of a single compound against a protein library.
|
1223 |
-
</center>
|
1224 |
-
''')
|
1225 |
-
with gr.Blocks() as identify_block:
|
1226 |
-
with gr.Column() as identify_page:
|
1227 |
-
with gr.Row():
|
1228 |
-
with gr.Column():
|
1229 |
-
HelpTip(
|
1230 |
-
"Enter (paste) a compound SMILES below manually or upload a SDF file. "
|
1231 |
-
"If multiple entities are in the SDF, only the first will be used. "
|
1232 |
-
"SMILES can be obtained by searching for the compound of interest in databases such "
|
1233 |
-
"as NCBI, PubChem and and ChEMBL."
|
1234 |
-
)
|
1235 |
-
compound_type = gr.Dropdown(
|
1236 |
-
label='Step 1. Select Compound Input Type and Input',
|
1237 |
-
choices=['SMILES', 'SDF'],
|
1238 |
-
info='Enter (paste) an SMILES string or upload an SDF file to convert to SMILES.',
|
1239 |
-
value='SMILES',
|
1240 |
-
interactive=True)
|
1241 |
-
compound_upload_btn = gr.UploadButton(label='OR Upload a SDF File', variant='primary',
|
1242 |
-
type='binary', visible=False)
|
1243 |
-
|
1244 |
-
compound_smiles = gr.Code(label='Input or Display Compound SMILES', interactive=True, lines=5)
|
1245 |
-
example_drug = gr.Button(value='Example: Aspirin', elem_classes='example')
|
1246 |
-
|
1247 |
-
with gr.Row():
|
1248 |
-
with gr.Column():
|
1249 |
-
HelpTip(
|
1250 |
-
"By default, models trained on all protein families (general) will be applied. "
|
1251 |
-
# "If the proteins in the target library of interest all belong to the same protein "
|
1252 |
-
# "family, manually selecting the family is supported."
|
1253 |
-
)
|
1254 |
-
target_identify_target_family = gr.Dropdown(choices=['General'],
|
1255 |
-
value='General',
|
1256 |
-
label='Step 2. Select Target Family ('
|
1257 |
-
'Optional)')
|
1258 |
-
|
1259 |
-
with gr.Row():
|
1260 |
-
with gr.Column():
|
1261 |
-
HelpTip(
|
1262 |
-
"Select a preset target library (e.g., ChEMBL33_human_proteins). "
|
1263 |
-
"Alternatively, upload a CSV file with a column named X2 containing target protein "
|
1264 |
-
"sequences, or use an FASTA file (Max. 10,000 targets per task). "
|
1265 |
-
"Example CSV and SDF files are provided below "
|
1266 |
-
"and can be downloaded by clicking the lower right corner."
|
1267 |
-
)
|
1268 |
-
target_library = gr.Dropdown(label='Step 3. Select a Preset Target Library',
|
1269 |
-
choices=list(TARGET_LIBRARY_MAP.keys()))
|
1270 |
-
with gr.Row():
|
1271 |
-
gr.File(label='Example FASTA target library',
|
1272 |
-
value='data/examples/target_library.fasta', interactive=False)
|
1273 |
-
gr.File(label='Example CSV target library',
|
1274 |
-
value='data/examples/target_library.csv', interactive=False)
|
1275 |
-
target_library_upload_btn = gr.UploadButton(
|
1276 |
-
label='OR Upload Your Own Library', variant='primary')
|
1277 |
-
target_library_upload = gr.File(label='Custom target library file', visible=False)
|
1278 |
-
|
1279 |
-
with gr.Row():
|
1280 |
-
with gr.Column():
|
1281 |
-
HelpTip(
|
1282 |
-
"Interaction prediction provides you binding probability score between the target of "
|
1283 |
-
"interest and each compound in the library, "
|
1284 |
-
"while affinity prediction directly estimates their binding strength measured using "
|
1285 |
-
"IC50."
|
1286 |
-
)
|
1287 |
-
target_identify_task = gr.Dropdown(
|
1288 |
-
list(TASK_MAP.keys()),
|
1289 |
-
label='Step 4. Select the Prediction Task You Want to Conduct',
|
1290 |
-
value='Compound-protein interaction')
|
1291 |
-
|
1292 |
-
with gr.Row():
|
1293 |
-
with gr.Column():
|
1294 |
-
HelpTip(
|
1295 |
-
"Select your preferred model, or click Recommend for the best-performing model based "
|
1296 |
-
"on the selected task, family, and whether the compound was trained. "
|
1297 |
-
"Please refer to documentation for detailed benchamrk results."
|
1298 |
-
)
|
1299 |
-
target_identify_preset = gr.Dropdown(list(PRESET_MAP.keys()),
|
1300 |
-
label='Step 5. Select a Preset Model')
|
1301 |
-
identify_preset_recommend_btn = gr.Button(value='OR Let Us Recommend for You',
|
1302 |
-
variant='primary')
|
1303 |
-
|
1304 |
-
with gr.Row():
|
1305 |
-
with gr.Column():
|
1306 |
-
target_identify_email = gr.Textbox(
|
1307 |
-
label='Step 6. Input Your Email Address (Optional)',
|
1308 |
-
info="Your email address will be used to notify you about the completion of your job."
|
1309 |
-
)
|
1310 |
-
|
1311 |
-
with gr.Row(visible=True):
|
1312 |
-
# target_identify_clr_btn = gr.ClearButton(size='lg')
|
1313 |
-
target_identify_btn = gr.Button(value='SUBMIT THE IDENTIFICATION JOB', variant='primary',
|
1314 |
-
size='lg')
|
1315 |
-
|
1316 |
-
identify_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
|
1317 |
-
identify_waiting = gr.Markdown(f"Your job is running... It might take a few minutes."
|
1318 |
-
f"When it's done, you will be redirected to the report page. "
|
1319 |
-
f"Meanwhile, please leave the page on.",
|
1320 |
-
visible=False)
|
1321 |
-
with gr.TabItem(label='Interaction pair inference', id=2):
|
1322 |
-
gr.Markdown('''
|
1323 |
-
# <center>Interaction Pair Inference</center>
|
1324 |
-
<center>To predict interactions or binding affinities between up to 10,000 paired compound-protein data.</center>
|
1325 |
-
''')
|
1326 |
-
with gr.Blocks() as infer_block:
|
1327 |
-
with gr.Column() as infer_page:
|
1328 |
-
HelpTip(
|
1329 |
-
"A custom interation pair dataset can be a CSV file with 2 required columns "
|
1330 |
-
"(X1 for smiles and X2 for sequences) "
|
1331 |
-
"and optionally 2 ID columns (ID1 for compound ID and ID2 for target ID), "
|
1332 |
-
"or generated from a FASTA file containing multiple "
|
1333 |
-
"sequences and a SDF file containing multiple compounds. "
|
1334 |
-
"Currently, a maximum of 10,000 pairs is supported, "
|
1335 |
-
"which means that the size of CSV file or "
|
1336 |
-
"the product of the two library sizes should not exceed 10,000."
|
1337 |
-
)
|
1338 |
-
infer_type = gr.Dropdown(
|
1339 |
-
choices=['Upload a CSV file containing paired compound-protein data',
|
1340 |
-
'Upload a compound library and a target library'],
|
1341 |
-
label='Step 1. Select Pair Input Type and Input',
|
1342 |
-
value='Upload a CSV file containing paired compound-protein data')
|
1343 |
-
with gr.Column() as pair_upload:
|
1344 |
-
gr.File(label="Example CSV dataset",
|
1345 |
-
value="data/examples/interaction_pair_inference.csv",
|
1346 |
-
interactive=False)
|
1347 |
-
with gr.Row():
|
1348 |
-
infer_csv_prompt = gr.Button(value="Upload Your Own Dataset Below",
|
1349 |
-
visible=True)
|
1350 |
-
with gr.Column():
|
1351 |
-
infer_data_for_predict = gr.File(
|
1352 |
-
label='Upload CSV File Containing Paired Records',
|
1353 |
-
file_count="single", type='filepath', visible=True)
|
1354 |
-
with gr.Column(visible=False) as pair_generate:
|
1355 |
-
with gr.Row():
|
1356 |
-
gr.File(label='Example SDF compound library',
|
1357 |
-
value='data/examples/compound_library.sdf', interactive=False)
|
1358 |
-
gr.File(label='Example FASTA target library',
|
1359 |
-
value='data/examples/target_library.fasta', interactive=False)
|
1360 |
-
with gr.Row():
|
1361 |
-
gr.File(label='Example CSV compound library',
|
1362 |
-
value='data/examples/compound_library.csv', interactive=False)
|
1363 |
-
gr.File(label='Example CSV target library',
|
1364 |
-
value='data/examples/target_library.csv', interactive=False)
|
1365 |
-
with gr.Row():
|
1366 |
-
infer_library_prompt = gr.Button(value="Upload Your Own Libraries Below",
|
1367 |
-
visible=False)
|
1368 |
-
with gr.Row():
|
1369 |
-
infer_drug = gr.File(label='Upload SDF/CSV File Containing Multiple Compounds',
|
1370 |
-
file_count="single", type='filepath')
|
1371 |
-
infer_target = gr.File(label='Upload FASTA/CSV File Containing Multiple Targets',
|
1372 |
-
file_count="single", type='filepath')
|
1373 |
-
|
1374 |
-
with gr.Row():
|
1375 |
-
with gr.Column():
|
1376 |
-
HelpTip(
|
1377 |
-
"By default, models trained on all protein families (general) will be applied. "
|
1378 |
-
"If the proteins in the target library of interest "
|
1379 |
-
"all belong to the same protein family, manually selecting the family is supported."
|
1380 |
-
)
|
1381 |
-
pair_infer_target_family = gr.Dropdown(choices=list(TARGET_FAMILY_MAP.keys()),
|
1382 |
-
value='General',
|
1383 |
-
label='Step 2. Select Target Family (Optional)')
|
1384 |
-
|
1385 |
-
with gr.Row():
|
1386 |
-
with gr.Column():
|
1387 |
-
HelpTip(
|
1388 |
-
"Interaction prediction provides you binding probability score "
|
1389 |
-
"between the target of interest and each compound in the library, "
|
1390 |
-
"while affinity prediction directly estimates their binding strength "
|
1391 |
-
"measured using IC50."
|
1392 |
-
)
|
1393 |
-
pair_infer_task = gr.Dropdown(
|
1394 |
-
list(TASK_MAP.keys()),
|
1395 |
-
label='Step 3. Select the Prediction Task You Want to Conduct',
|
1396 |
-
value='Compound-protein interaction')
|
1397 |
-
|
1398 |
-
with gr.Row():
|
1399 |
-
with gr.Column():
|
1400 |
-
HelpTip("Select your preferred model. "
|
1401 |
-
"Please refer to documentation for detailed benchmark results."
|
1402 |
-
)
|
1403 |
-
pair_infer_preset = gr.Dropdown(list(PRESET_MAP.keys()),
|
1404 |
-
label='Step 4. Select a Preset Model')
|
1405 |
-
# infer_preset_recommend_btn = gr.Button(value='OR Let Us Recommend for You',
|
1406 |
-
# variant='primary')
|
1407 |
-
|
1408 |
-
with gr.Row():
|
1409 |
-
pair_infer_email = gr.Textbox(
|
1410 |
-
label='Step 5. Input Your Email Address (Optional)',
|
1411 |
-
info="Your email address will be used to notify you about the completion of your job."
|
1412 |
-
)
|
1413 |
-
|
1414 |
-
with gr.Row(visible=True):
|
1415 |
-
# pair_infer_clr_btn = gr.ClearButton(size='lg')
|
1416 |
-
pair_infer_btn = gr.Button(value='SUBMIT THE INFERENCE JOB', variant='primary', size='lg')
|
1417 |
-
|
1418 |
-
infer_waiting = gr.Markdown(f"Your job is running... It might take a few minutes."
|
1419 |
-
f"When it's done, you will be redirected to the report page. "
|
1420 |
-
f"Meanwhile, please leave the page on.",
|
1421 |
-
visible=False)
|
1422 |
-
|
1423 |
-
with gr.TabItem(label='Chemical property report', id=3):
|
1424 |
-
with gr.Blocks() as report:
|
1425 |
-
gr.Markdown('''
|
1426 |
-
# <center>Chemical Property Report</center>
|
1427 |
-
|
1428 |
-
To compute chemical properties for the predictions of drug hit screening,
|
1429 |
-
target protein identification, and interaction pair inference.
|
1430 |
-
|
1431 |
-
You may also upload your own dataset using a CSV file containing
|
1432 |
-
one required column `X1` for compound SMILES.
|
1433 |
-
|
1434 |
-
The page shows only a preview report displaying at most 30 records
|
1435 |
-
(with top predicted CPI/CPA if reporting results from a prediction job).
|
1436 |
-
|
1437 |
-
Please first `Preview` the report, then `Generate` and download a CSV report
|
1438 |
-
or an interactive HTML report below if you wish to access the full report.
|
1439 |
-
''')
|
1440 |
-
with gr.Row():
|
1441 |
-
with gr.Column():
|
1442 |
-
file_for_report = gr.File(interactive=True, type='filepath')
|
1443 |
-
report_task = gr.Dropdown(list(TASK_MAP.keys()), visible=False, value=None,
|
1444 |
-
label='Specify the Task for the Labels in the Upload Dataset')
|
1445 |
-
raw_df = gr.State(value=pd.DataFrame())
|
1446 |
-
report_df = gr.State(value=pd.DataFrame())
|
1447 |
-
scores = gr.CheckboxGroup(list(SCORE_MAP.keys()), label='Scores')
|
1448 |
-
filters = gr.CheckboxGroup(list(FILTER_MAP.keys()), label='Filters')
|
1449 |
-
|
1450 |
-
with gr.Row():
|
1451 |
-
# clear_btn = gr.ClearButton(size='lg')
|
1452 |
-
analyze_btn = gr.Button('Preview Top 30 Records', variant='primary', size='lg',
|
1453 |
-
interactive=False)
|
1454 |
-
|
1455 |
-
with gr.Row():
|
1456 |
-
with gr.Column(scale=3):
|
1457 |
-
html_report = gr.HTML() # label='Results', visible=True)
|
1458 |
-
ranking_pie_chart = gr.Plot(visible=False)
|
1459 |
-
|
1460 |
-
with gr.Row():
|
1461 |
-
with gr.Column():
|
1462 |
-
csv_generate = gr.Button(value='Generate CSV Report',
|
1463 |
-
interactive=False, variant='primary')
|
1464 |
-
csv_download_file = gr.File(label='Download CSV Report', visible=False)
|
1465 |
-
with gr.Column():
|
1466 |
-
html_generate = gr.Button(value='Generate HTML Report',
|
1467 |
-
interactive=False, variant='primary')
|
1468 |
-
html_download_file = gr.File(label='Download HTML Report', visible=False)
|
1469 |
-
|
1470 |
-
|
1471 |
-
def target_input_type_select(input_type):
|
1472 |
-
match input_type:
|
1473 |
-
case 'UniProt ID':
|
1474 |
-
return [gr.Dropdown(info=''),
|
1475 |
-
gr.UploadButton(visible=False),
|
1476 |
-
gr.Textbox(visible=True, value=''),
|
1477 |
-
gr.Textbox(visible=False, value=''),
|
1478 |
-
gr.Textbox(visible=False, value=''),
|
1479 |
-
gr.Button(visible=True),
|
1480 |
-
gr.Code(value=''),
|
1481 |
-
gr.Button(visible=False)]
|
1482 |
-
case 'Gene symbol':
|
1483 |
-
return [gr.Dropdown(info=''),
|
1484 |
-
gr.UploadButton(visible=False),
|
1485 |
-
gr.Textbox(visible=False, value=''),
|
1486 |
-
gr.Textbox(visible=True, value=''),
|
1487 |
-
gr.Textbox(visible=True, value=''),
|
1488 |
-
gr.Button(visible=True),
|
1489 |
-
gr.Code(value=''),
|
1490 |
-
gr.Button(visible=False)]
|
1491 |
-
case 'Sequence':
|
1492 |
-
return [gr.Dropdown(info='Enter (paste) a FASTA string below manually or upload a FASTA file.'),
|
1493 |
-
gr.UploadButton(visible=True),
|
1494 |
-
gr.Textbox(visible=False, value=''),
|
1495 |
-
gr.Textbox(visible=False, value=''),
|
1496 |
-
gr.Textbox(visible=False, value=''),
|
1497 |
-
gr.Button(visible=False),
|
1498 |
-
gr.Code(value=''),
|
1499 |
-
gr.Button(visible=True)]
|
1500 |
-
|
1501 |
-
|
1502 |
-
target_input_type.select(
|
1503 |
-
fn=target_input_type_select,
|
1504 |
-
inputs=target_input_type,
|
1505 |
-
outputs=[
|
1506 |
-
target_input_type, target_upload_btn,
|
1507 |
-
target_id, target_gene, target_organism, target_query_btn,
|
1508 |
-
target_fasta, target_paste_markdown
|
1509 |
-
],
|
1510 |
-
show_progress=False
|
1511 |
-
)
|
1512 |
-
|
1513 |
-
|
1514 |
-
def uniprot_query(input_type, uid, gene, organism='Human'):
|
1515 |
-
fasta_seq = ''
|
1516 |
-
|
1517 |
-
match input_type:
|
1518 |
-
case 'UniProt ID':
|
1519 |
-
query = f"{uid.strip()}.fasta"
|
1520 |
-
case 'Gene symbol':
|
1521 |
-
organism = organism if organism else 'Human'
|
1522 |
-
query = f'search?query=organism_name:{organism.strip()}+AND+gene:{gene.strip()}&format=fasta'
|
1523 |
-
|
1524 |
-
try:
|
1525 |
-
fasta = SESSION.get(UNIPROT_ENDPOINT.format(query=query))
|
1526 |
-
fasta.raise_for_status()
|
1527 |
-
fasta_seq = fasta.text
|
1528 |
-
except Exception as e:
|
1529 |
-
raise gr.Warning(f"Failed to query FASTA from UniProt database due to {str(e)}")
|
1530 |
-
finally:
|
1531 |
-
return fasta_seq
|
1532 |
-
|
1533 |
-
def process_fasta_upload(fasta_upload):
|
1534 |
-
fasta = ''
|
1535 |
-
try:
|
1536 |
-
fasta = fasta_upload.decode()
|
1537 |
-
except Exception as e:
|
1538 |
-
gr.Warning(f"Please upload a valid FASTA file. Error: {str(e)}")
|
1539 |
-
return fasta
|
1540 |
-
|
1541 |
-
target_upload_btn.upload(fn=process_fasta_upload, inputs=target_upload_btn, outputs=target_fasta)
|
1542 |
-
target_query_btn.click(uniprot_query,
|
1543 |
-
inputs=[target_input_type, target_id, target_gene, target_organism],
|
1544 |
-
outputs=target_fasta)
|
1545 |
-
|
1546 |
-
|
1547 |
-
def target_family_detect(fasta, progress=gr.Progress(track_tqdm=True)):
|
1548 |
-
aligner = PairwiseAligner(scoring='blastp', mode='local')
|
1549 |
-
alignment_df = pd.read_csv('data/target_libraries/ChEMBL33_all_spe_single_prot_info.csv')
|
1550 |
-
|
1551 |
-
def align_score(query):
|
1552 |
-
return aligner.align(process_target_fasta(fasta), query).score
|
1553 |
-
|
1554 |
-
alignment_df['score'] = alignment_df['X2'].swifter.progress_bar(
|
1555 |
-
desc="Detecting protein family of the target...").apply(align_score)
|
1556 |
-
row = alignment_df.loc[alignment_df['score'].idxmax()]
|
1557 |
-
return gr.Dropdown(value=row['protein_family'].capitalize(),
|
1558 |
-
info=f"Reason: Best BLASTP score ({row['score']}) "
|
1559 |
-
f"with {row['ID2']} from family {row['protein_family']}")
|
1560 |
-
|
1561 |
-
|
1562 |
-
target_family_detect_btn.click(fn=target_family_detect, inputs=target_fasta, outputs=drug_screen_target_family)
|
1563 |
-
|
1564 |
-
# target_fasta.focus(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False)
|
1565 |
-
target_fasta.blur(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False)
|
1566 |
-
|
1567 |
-
drug_library_upload_btn.upload(fn=lambda x: [
|
1568 |
-
x.name, gr.Dropdown(value=Path(x.name).name, choices=list(DRUG_LIBRARY_MAP.keys()) + [Path(x.name).name])
|
1569 |
-
], inputs=drug_library_upload_btn, outputs=[drug_library_upload, drug_library])
|
1570 |
-
|
1571 |
-
|
1572 |
-
def example_fill(input_type):
|
1573 |
-
return {target_id: 'Q16539',
|
1574 |
-
target_gene: 'MAPK14',
|
1575 |
-
target_organism: 'Human',
|
1576 |
-
target_fasta: """
|
1577 |
-
>sp|Q16539|MK14_HUMAN Mitogen-activated protein kinase 14 OS=Homo sapiens OX=9606 GN=MAPK14 PE=1 SV=3
|
1578 |
-
MSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQ
|
1579 |
-
SIIHAKRTYRELRLLKHMKHENVIGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVKCQ
|
1580 |
-
KLTDDHVQFLIYQILRGLKYIHSADIIHRDLKPSNLAVNEDCELKILDFGLARHTDDEMT
|
1581 |
-
GYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILRLVG
|
1582 |
-
TPGAELLKKISSESARNYIQSLTQMPKMNFANVFIGANPLAVDLLEKMLVLDSDKRITAA
|
1583 |
-
QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
1584 |
-
"""}
|
1585 |
-
|
1586 |
-
|
1587 |
-
example_fasta.click(fn=example_fill, inputs=target_input_type, outputs=[
|
1588 |
-
target_id, target_gene, target_organism, target_fasta], show_progress=False)
|
1589 |
-
|
1590 |
-
|
1591 |
-
# example_uniprot.click(fn=example_fill, inputs=target_input_type, outputs=target_fasta, show_progress=False)
|
1592 |
-
# example_gene.click(fn=example_fill, inputs=target_input_type, outputs=target_fasta, show_progress=False)
|
1593 |
-
|
1594 |
-
|
1595 |
-
def screen_recommend_model(fasta, family, task):
|
1596 |
-
task = TASK_MAP[task]
|
1597 |
-
score = TASK_METRIC_MAP[task]
|
1598 |
-
benchmark_df = pd.read_csv(f'data/benchmarks/{task}_test_metrics.csv')
|
1599 |
-
|
1600 |
-
if not fasta:
|
1601 |
-
gr.Warning('Please enter a valid FASTA for model recommendation.')
|
1602 |
-
return None
|
1603 |
-
|
1604 |
-
if family == 'General':
|
1605 |
-
seen_targets = pd.read_csv(
|
1606 |
-
f'data/benchmarks/seen_targets/all_families_full_{task.lower()}_random_split.csv')
|
1607 |
-
if process_target_fasta(fasta) in seen_targets['X2'].values:
|
1608 |
-
scenario = "Seen Target"
|
1609 |
-
else:
|
1610 |
-
scenario = "Unseen Target"
|
1611 |
-
filtered_df = benchmark_df[(benchmark_df['Family'] == 'All Families')
|
1612 |
-
& (benchmark_df['Scenario'] == scenario)
|
1613 |
-
& (benchmark_df['Type'] == 'General')]
|
1614 |
-
|
1615 |
-
else:
|
1616 |
-
seen_targets_general = pd.read_csv(
|
1617 |
-
f'data/benchmarks/seen_targets/all_families_full_{task.lower()}_random_split.csv')
|
1618 |
-
if process_target_fasta(fasta) in seen_targets_general['X2'].values:
|
1619 |
-
scenario_general = "Seen Target"
|
1620 |
-
else:
|
1621 |
-
scenario_general = "Unseen Target"
|
1622 |
-
|
1623 |
-
seen_targets_family = pd.read_csv(
|
1624 |
-
f'data/benchmarks/seen_targets/{TARGET_FAMILY_MAP[family]}_{task.lower()}_random_split.csv')
|
1625 |
-
if process_target_fasta(fasta) in seen_targets_family['X2'].values:
|
1626 |
-
scenario_family = "Seen Target"
|
1627 |
-
else:
|
1628 |
-
scenario_family = "Unseen Target"
|
1629 |
-
|
1630 |
-
filtered_df_general = benchmark_df[(benchmark_df['Family'] == family)
|
1631 |
-
& (benchmark_df['Scenario'] == scenario_general)
|
1632 |
-
& (benchmark_df['Type'] == 'General')]
|
1633 |
-
filtered_df_family = benchmark_df[(benchmark_df['Family'] == family)
|
1634 |
-
& (benchmark_df['Scenario'] == scenario_family)
|
1635 |
-
& (benchmark_df['Type'] == 'Family')]
|
1636 |
-
filtered_df = pd.concat([filtered_df_general, filtered_df_family])
|
1637 |
-
|
1638 |
-
row = filtered_df.loc[filtered_df[score].idxmax()]
|
1639 |
-
|
1640 |
-
return gr.Dropdown(value=row['Model'],
|
1641 |
-
info=f"Reason: {row['Scenario']} in training; we recommend the model "
|
1642 |
-
f"with the best {score} ({float(row[score]):.3f}) "
|
1643 |
-
f"in the {row['Scenario']} scenario on {row['Family']}.")
|
1644 |
-
|
1645 |
-
|
1646 |
-
screen_preset_recommend_btn.click(fn=screen_recommend_model,
|
1647 |
-
inputs=[target_fasta, drug_screen_target_family, drug_screen_task],
|
1648 |
-
outputs=drug_screen_preset)
|
1649 |
-
|
1650 |
-
|
1651 |
-
def compound_input_type_select(input_type):
|
1652 |
-
match input_type:
|
1653 |
-
case 'SMILES':
|
1654 |
-
return gr.Button(visible=False)
|
1655 |
-
case 'SDF':
|
1656 |
-
return gr.Button(visible=True)
|
1657 |
-
|
1658 |
-
|
1659 |
-
compound_type.select(fn=compound_input_type_select,
|
1660 |
-
inputs=compound_type, outputs=compound_upload_btn, show_progress=False)
|
1661 |
-
|
1662 |
-
|
1663 |
-
def compound_upload_process(input_type, input_upload):
|
1664 |
-
smiles = ''
|
1665 |
-
try:
|
1666 |
-
match input_type:
|
1667 |
-
case 'SMILES':
|
1668 |
-
smiles = input_upload.decode()
|
1669 |
-
case 'SDF':
|
1670 |
-
suppl = Chem.ForwardSDMolSupplier(io.BytesIO(input_upload))
|
1671 |
-
smiles = Chem.MolToSmiles(next(suppl))
|
1672 |
-
except Exception as e:
|
1673 |
-
gr.Warning(f"Please upload a valid {input_type} file. Error: {str(e)}")
|
1674 |
-
return smiles
|
1675 |
-
|
1676 |
-
|
1677 |
-
compound_upload_btn.upload(fn=compound_upload_process,
|
1678 |
-
inputs=[compound_type, compound_upload_btn],
|
1679 |
-
outputs=compound_smiles)
|
1680 |
-
|
1681 |
-
example_drug.click(fn=lambda: 'CC(=O)Oc1ccccc1C(=O)O', outputs=compound_smiles, show_progress=False)
|
1682 |
-
|
1683 |
-
target_library_upload_btn.upload(fn=lambda x: [
|
1684 |
-
x.name, gr.Dropdown(value=Path(x.name).name, choices=list(TARGET_LIBRARY_MAP.keys()) + [Path(x.name).name])
|
1685 |
-
], inputs=target_library_upload_btn, outputs=[target_library_upload, target_library])
|
1686 |
-
|
1687 |
-
|
1688 |
-
def identify_recommend_model(smiles, task):
|
1689 |
-
task = TASK_MAP[task]
|
1690 |
-
score = TASK_METRIC_MAP[task]
|
1691 |
-
benchmark_df = pd.read_csv(f'data/benchmarks/{task}_test_metrics.csv')
|
1692 |
-
|
1693 |
-
if not smiles:
|
1694 |
-
gr.Warning('Please enter a valid SMILES for model recommendation.')
|
1695 |
-
return None
|
1696 |
-
|
1697 |
-
seen_drugs = pd.read_csv(
|
1698 |
-
f'data/benchmarks/seen_drugs/all_families_full_{task.lower()}_random_split.csv')
|
1699 |
-
if rdkit_canonicalize(smiles) in seen_drugs['X1'].values:
|
1700 |
-
scenario = "Seen Compound"
|
1701 |
-
else:
|
1702 |
-
scenario = "Unseen Compound"
|
1703 |
-
|
1704 |
-
filtered_df = benchmark_df[(benchmark_df['Family'] == 'All Families')
|
1705 |
-
& (benchmark_df['Scenario'] == scenario)
|
1706 |
-
& (benchmark_df['Type'] == 'General')]
|
1707 |
-
|
1708 |
-
row = filtered_df.loc[filtered_df[score].idxmax()]
|
1709 |
-
|
1710 |
-
return gr.Dropdown(value=row['Model'],
|
1711 |
-
info=f"Reason: {scenario} in training; choosing the model "
|
1712 |
-
f"with the best {score} ({float(row[score]):3f}) "
|
1713 |
-
f"in the {scenario} scenario.")
|
1714 |
-
|
1715 |
-
|
1716 |
-
identify_preset_recommend_btn.click(fn=identify_recommend_model,
|
1717 |
-
inputs=[compound_smiles, target_identify_task],
|
1718 |
-
outputs=target_identify_preset)
|
1719 |
-
|
1720 |
-
|
1721 |
-
def infer_type_change(upload_type):
|
1722 |
-
match upload_type:
|
1723 |
-
case "Upload a compound library and a target library":
|
1724 |
-
return {
|
1725 |
-
pair_upload: gr.Column(visible=False),
|
1726 |
-
pair_generate: gr.Column(visible=True),
|
1727 |
-
infer_data_for_predict: None,
|
1728 |
-
infer_drug: None,
|
1729 |
-
infer_target: None,
|
1730 |
-
infer_csv_prompt: gr.Button(visible=False),
|
1731 |
-
infer_library_prompt: gr.Button(visible=True),
|
1732 |
-
}
|
1733 |
-
match upload_type:
|
1734 |
-
case "Upload a CSV file containing paired compound-protein data":
|
1735 |
-
return {
|
1736 |
-
pair_upload: gr.Column(visible=True),
|
1737 |
-
pair_generate: gr.Column(visible=False),
|
1738 |
-
infer_data_for_predict: None,
|
1739 |
-
infer_drug: None,
|
1740 |
-
infer_target: None,
|
1741 |
-
infer_csv_prompt: gr.Button(visible=True),
|
1742 |
-
infer_library_prompt: gr.Button(visible=False),
|
1743 |
-
}
|
1744 |
-
|
1745 |
-
|
1746 |
-
infer_type.select(fn=infer_type_change, inputs=infer_type,
|
1747 |
-
outputs=[pair_upload, pair_generate, infer_data_for_predict, infer_drug, infer_target,
|
1748 |
-
infer_csv_prompt, infer_library_prompt])
|
1749 |
-
|
1750 |
-
|
1751 |
-
def drug_screen_validate(fasta, library, library_upload, state, progress=gr.Progress(track_tqdm=True)):
|
1752 |
-
if not state:
|
1753 |
-
try:
|
1754 |
-
fasta = process_target_fasta(fasta)
|
1755 |
-
err = validate_seq_str(fasta, FASTA_PAT)
|
1756 |
-
if err:
|
1757 |
-
raise ValueError(f'Found error(s) in your target fasta input: {err}')
|
1758 |
-
if library in DRUG_LIBRARY_MAP.keys():
|
1759 |
-
screen_df = pd.read_csv(Path('data/drug_libraries', DRUG_LIBRARY_MAP[library]))
|
1760 |
-
else:
|
1761 |
-
screen_df = process_drug_library_upload(library_upload)
|
1762 |
-
if len(screen_df) >= CUSTOM_DATASET_MAX_LEN:
|
1763 |
-
raise gr.Error(f'The uploaded compound library has more records '
|
1764 |
-
f'than the allowed maximum (CUSTOM_DATASET_MAX_LEN).')
|
1765 |
-
|
1766 |
-
screen_df['X2'] = fasta
|
1767 |
-
|
1768 |
-
job_id = uuid4()
|
1769 |
-
temp_file = Path(f'temp/{job_id}_input.csv').resolve()
|
1770 |
-
screen_df.to_csv(temp_file, index=False)
|
1771 |
-
if temp_file.is_file():
|
1772 |
-
return {screen_data_for_predict: str(temp_file),
|
1773 |
-
screen_flag: job_id,
|
1774 |
-
run_state: job_id}
|
1775 |
-
else:
|
1776 |
-
raise SystemError('Failed to create temporary files. Please try again later.')
|
1777 |
-
except Exception as e:
|
1778 |
-
gr.Warning(f'Failed to submit the job due to error: {str(e)}')
|
1779 |
-
return {screen_flag: False,
|
1780 |
-
run_state: False}
|
1781 |
-
else:
|
1782 |
-
gr.Warning('You have another prediction job '
|
1783 |
-
'(drug hit screening, target protein identification, or interation pair inference) '
|
1784 |
-
'running in the session right now. '
|
1785 |
-
'Please submit another job when your current job has finished.')
|
1786 |
-
return {screen_flag: False,
|
1787 |
-
run_state: state}
|
1788 |
-
|
1789 |
-
|
1790 |
-
def target_identify_validate(smiles, library, library_upload, state, progress=gr.Progress(track_tqdm=True)):
|
1791 |
-
if not state:
|
1792 |
-
try:
|
1793 |
-
smiles = smiles.strip()
|
1794 |
-
err = validate_seq_str(smiles, SMILES_PAT)
|
1795 |
-
if err:
|
1796 |
-
raise ValueError(f'Found error(s) in your target fasta input: {err}')
|
1797 |
-
if library in TARGET_LIBRARY_MAP.keys():
|
1798 |
-
identify_df = pd.read_csv(Path('data/target_libraries', TARGET_LIBRARY_MAP[library]))
|
1799 |
-
else:
|
1800 |
-
identify_df = process_target_library_upload(library_upload)
|
1801 |
-
if len(identify_df) >= CUSTOM_DATASET_MAX_LEN:
|
1802 |
-
raise gr.Error(f'The uploaded target library has more records '
|
1803 |
-
f'than the allowed maximum (CUSTOM_DATASET_MAX_LEN).')
|
1804 |
-
identify_df['X1'] = smiles
|
1805 |
-
|
1806 |
-
job_id = uuid4()
|
1807 |
-
temp_file = Path(f'temp/{job_id}_input.csv').resolve()
|
1808 |
-
identify_df.to_csv(temp_file, index=False)
|
1809 |
-
if temp_file.is_file():
|
1810 |
-
return {identify_data_for_predict: str(temp_file),
|
1811 |
-
identify_flag: job_id,
|
1812 |
-
run_state: job_id}
|
1813 |
-
else:
|
1814 |
-
raise SystemError('Failed to create temporary files. Please try again later.')
|
1815 |
-
except Exception as e:
|
1816 |
-
gr.Warning(f'Failed to submit the job due to error: {str(e)}')
|
1817 |
-
return {identify_flag: False,
|
1818 |
-
run_state: False}
|
1819 |
-
else:
|
1820 |
-
gr.Warning('You have another prediction job '
|
1821 |
-
'(drug hit screening, target protein identification, or interation pair inference) '
|
1822 |
-
'running in the session right now. '
|
1823 |
-
'Please submit another job when your current job has finished.')
|
1824 |
-
return {identify_flag: False,
|
1825 |
-
run_state: state}
|
1826 |
-
# return {identify_flag: False}
|
1827 |
-
|
1828 |
-
|
1829 |
-
def pair_infer_validate(drug_target_pair_upload, drug_upload, target_upload, state,
|
1830 |
-
progress=gr.Progress(track_tqdm=True)):
|
1831 |
-
if not state:
|
1832 |
-
try:
|
1833 |
-
job_id = uuid4()
|
1834 |
-
if drug_target_pair_upload:
|
1835 |
-
infer_df = pd.read_csv(drug_target_pair_upload)
|
1836 |
-
validate_columns(infer_df, ['X1', 'X2'])
|
1837 |
-
|
1838 |
-
infer_df['X1_ERR'] = infer_df['X1'].swifter.progress_bar(desc="Validating SMILES...").apply(
|
1839 |
-
validate_seq_str, regex=SMILES_PAT)
|
1840 |
-
if not infer_df['X1_ERR'].isna().all():
|
1841 |
-
raise ValueError(
|
1842 |
-
f"Encountered invalid SMILES:\n{infer_df[~infer_df['X1_ERR'].isna()][['X1', 'X1_ERR']]}")
|
1843 |
-
|
1844 |
-
infer_df['X2_ERR'] = infer_df['X2'].swifter.progress_bar(desc="Validating FASTA...").apply(
|
1845 |
-
validate_seq_str, regex=FASTA_PAT)
|
1846 |
-
if not infer_df['X2_ERR'].isna().all():
|
1847 |
-
raise ValueError(
|
1848 |
-
f"Encountered invalid FASTA:\n{infer_df[~infer_df['X2_ERR'].isna()][['X2', 'X2_ERR']]}")
|
1849 |
-
|
1850 |
-
return {infer_data_for_predict: str(drug_target_pair_upload),
|
1851 |
-
infer_flag: job_id,
|
1852 |
-
run_state: job_id}
|
1853 |
-
|
1854 |
-
elif drug_upload and target_upload:
|
1855 |
-
drug_df = process_drug_library_upload(drug_upload)
|
1856 |
-
target_df = process_target_library_upload(target_upload)
|
1857 |
-
|
1858 |
-
drug_df.drop_duplicates(subset=['X1'], inplace=True)
|
1859 |
-
target_df.drop_duplicates(subset=['X2'], inplace=True)
|
1860 |
-
|
1861 |
-
infer_df = pd.DataFrame(list(itertools.product(drug_df['X1'], target_df['X2'])),
|
1862 |
-
columns=['X1', 'X2'])
|
1863 |
-
infer_df = infer_df.merge(drug_df, on='X1').merge(target_df, on='X2')
|
1864 |
-
|
1865 |
-
temp_file = Path(f'temp/{job_id}_input.csv').resolve()
|
1866 |
-
infer_df.to_csv(temp_file, index=False)
|
1867 |
-
if temp_file.is_file():
|
1868 |
-
return {infer_data_for_predict: str(temp_file),
|
1869 |
-
infer_flag: job_id,
|
1870 |
-
run_state: job_id}
|
1871 |
-
|
1872 |
-
else:
|
1873 |
-
raise gr.Error('Should upload a compound-protein pair dataset,or '
|
1874 |
-
'upload both a compound library and a target library.')
|
1875 |
-
|
1876 |
-
if len(infer_df) >= CUSTOM_DATASET_MAX_LEN:
|
1877 |
-
raise gr.Error(f'The uploaded/generated compound-protein pair dataset has more records '
|
1878 |
-
f'than the allowed maximum (CUSTOM_DATASET_MAX_LEN).')
|
1879 |
-
|
1880 |
-
except Exception as e:
|
1881 |
-
gr.Warning(f'Failed to submit the job due to error: {str(e)}')
|
1882 |
-
return {infer_flag: False,
|
1883 |
-
run_state: False}
|
1884 |
-
|
1885 |
-
else:
|
1886 |
-
gr.Warning('You have another prediction job '
|
1887 |
-
'(drug hit screening, target protein identification, or interation pair inference) '
|
1888 |
-
'running in the session right now. '
|
1889 |
-
'Please submit another job when your current job has finished.')
|
1890 |
-
return {infer_flag: False,
|
1891 |
-
run_state: state}
|
1892 |
-
|
1893 |
-
|
1894 |
-
drug_screen_btn.click(
|
1895 |
-
fn=drug_screen_validate,
|
1896 |
-
inputs=[target_fasta, drug_library, drug_library_upload, run_state], # , drug_screen_email],
|
1897 |
-
outputs=[screen_data_for_predict, screen_flag, run_state]
|
1898 |
-
).then(
|
1899 |
-
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
|
1900 |
-
outputs=[screen_page, screen_waiting]
|
1901 |
-
).then(
|
1902 |
-
fn=submit_predict,
|
1903 |
-
inputs=[screen_data_for_predict, drug_screen_task, drug_screen_preset,
|
1904 |
-
drug_screen_target_family, screen_flag, run_state], # , drug_screen_email],
|
1905 |
-
outputs=[file_for_report, run_state, report_upload_flag]
|
1906 |
-
).then(
|
1907 |
-
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False), gr.Tabs(selected=3)],
|
1908 |
-
outputs=[screen_page, screen_waiting, tabs]
|
1909 |
-
)
|
1910 |
-
|
1911 |
-
target_identify_btn.click(
|
1912 |
-
fn=target_identify_validate,
|
1913 |
-
inputs=[compound_smiles, target_library, target_library_upload, run_state], # , drug_screen_email],
|
1914 |
-
outputs=[identify_data_for_predict, identify_flag, run_state]
|
1915 |
-
).then(
|
1916 |
-
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
|
1917 |
-
outputs=[identify_page, identify_waiting]
|
1918 |
-
).then(
|
1919 |
-
fn=submit_predict,
|
1920 |
-
inputs=[identify_data_for_predict, target_identify_task, target_identify_preset,
|
1921 |
-
target_identify_target_family, identify_flag, run_state], # , target_identify_email],
|
1922 |
-
outputs=[file_for_report, run_state, report_upload_flag]
|
1923 |
-
).then(
|
1924 |
-
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False), gr.Tabs(selected=3)],
|
1925 |
-
outputs=[identify_page, identify_waiting, tabs]
|
1926 |
-
)
|
1927 |
-
|
1928 |
-
pair_infer_btn.click(
|
1929 |
-
fn=pair_infer_validate,
|
1930 |
-
inputs=[infer_data_for_predict, infer_drug, infer_target, run_state], # , drug_screen_email],
|
1931 |
-
outputs=[infer_data_for_predict, infer_flag, run_state]
|
1932 |
-
).then(
|
1933 |
-
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
|
1934 |
-
outputs=[infer_page, infer_waiting]
|
1935 |
-
).then(
|
1936 |
-
fn=submit_predict,
|
1937 |
-
inputs=[infer_data_for_predict, pair_infer_task, pair_infer_preset,
|
1938 |
-
pair_infer_target_family, infer_flag, run_state], # , pair_infer_email],
|
1939 |
-
outputs=[file_for_report, run_state, report_upload_flag]
|
1940 |
-
).then(
|
1941 |
-
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False), gr.Tabs(selected=3)],
|
1942 |
-
outputs=[infer_page, infer_waiting, tabs]
|
1943 |
-
)
|
1944 |
-
|
1945 |
-
# TODO background job from these 3 pipelines to update file_for_report
|
1946 |
-
def inquire_task(df, upload_flag):
|
1947 |
-
if upload_flag:
|
1948 |
-
if 'Y' in df.columns:
|
1949 |
-
label = 'actual CPI/CPA labels (`Y`)'
|
1950 |
-
elif 'Y^' in df.columns:
|
1951 |
-
label = 'predicted CPI/CPA labels (`Y^`)'
|
1952 |
-
else:
|
1953 |
-
return {analyze_btn: gr.Button(interactive=True),
|
1954 |
-
csv_generate: gr.Button(interactive=True),
|
1955 |
-
html_generate: gr.Button(interactive=True)}
|
1956 |
-
|
1957 |
-
return {report_task: gr.Dropdown(visible=True,
|
1958 |
-
info=f'Found {label} in your uploaded dataset. '
|
1959 |
-
'Is it compound-target interaction or binding affinity?'),
|
1960 |
-
html_report: '',
|
1961 |
-
analyze_btn: gr.Button(interactive=False),
|
1962 |
-
csv_generate: gr.Button(interactive=False),
|
1963 |
-
html_generate: gr.Button(interactive=False)}
|
1964 |
-
else:
|
1965 |
-
return {report_task: gr.Dropdown(visible=False)}
|
1966 |
-
|
1967 |
-
file_for_report.upload(
|
1968 |
-
fn=lambda: True, outputs=report_upload_flag
|
1969 |
-
)
|
1970 |
-
file_for_report.change(fn=update_df, inputs=file_for_report, outputs=[
|
1971 |
-
html_report, raw_df, report_df, analyze_btn]).success(
|
1972 |
-
fn=lambda: [gr.Button(interactive=False)]*2 + [gr.File(visible=False)]*2 + [gr.Dropdown(visible=False)],
|
1973 |
-
outputs=[csv_generate, html_generate, csv_download_file, html_download_file, report_task]
|
1974 |
-
).then(
|
1975 |
-
fn=inquire_task, inputs=[raw_df, report_upload_flag],
|
1976 |
-
outputs=[report_task, html_report, analyze_btn, csv_generate, html_generate]
|
1977 |
-
)
|
1978 |
-
file_for_report.clear(fn=lambda: [gr.Dropdown(visible=False, value=None), False],
|
1979 |
-
outputs=[report_task, report_upload_flag])
|
1980 |
-
|
1981 |
-
analyze_btn.click(fn=submit_report, inputs=[raw_df, scores, filters, report_task], outputs=[
|
1982 |
-
html_report, report_df, csv_download_file, html_download_file
|
1983 |
-
]).success(fn=lambda: [gr.Button(interactive=True)] * 2,
|
1984 |
-
outputs=[csv_generate, html_generate])
|
1985 |
-
|
1986 |
-
report_task.select(fn=lambda: gr.Button(interactive=True),
|
1987 |
-
outputs=analyze_btn)
|
1988 |
-
|
1989 |
-
|
1990 |
-
def create_csv_report_file(df, file_report, progress=gr.Progress(track_tqdm=True)):
|
1991 |
-
try:
|
1992 |
-
now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
1993 |
-
filename = f"reports/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.csv"
|
1994 |
-
df.drop(labels=['Compound', 'Scaffold'], axis=1).to_csv(filename, index=False)
|
1995 |
-
|
1996 |
-
return gr.File(filename)
|
1997 |
-
except Exception as e:
|
1998 |
-
gr.Warning(f"Failed to generate CSV due to error: {str(e)}")
|
1999 |
-
return None
|
2000 |
-
|
2001 |
-
|
2002 |
-
def create_html_report_file(df, file_report, progress=gr.Progress(track_tqdm=True)):
|
2003 |
-
try:
|
2004 |
-
now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
2005 |
-
filename = f"reports/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.html"
|
2006 |
-
create_html_report(df, filename)
|
2007 |
-
return gr.File(filename, visible=True)
|
2008 |
-
except Exception as e:
|
2009 |
-
gr.Warning(f"Failed to generate HTML due to error: {str(e)}")
|
2010 |
-
return None
|
2011 |
-
|
2012 |
-
|
2013 |
-
html_report.change(lambda: [gr.Button(visible=True)] * 2, outputs=[csv_generate, html_generate])
|
2014 |
-
csv_generate.click(
|
2015 |
-
lambda: [gr.Button(visible=False), gr.File(visible=True)], outputs=[csv_generate, csv_download_file],
|
2016 |
-
).then(fn=create_csv_report_file, inputs=[report_df, file_for_report],
|
2017 |
-
outputs=csv_download_file, show_progress='full')
|
2018 |
-
html_generate.click(
|
2019 |
-
lambda: [gr.Button(visible=False), gr.File(visible=True)], outputs=[html_generate, html_download_file],
|
2020 |
-
).then(fn=create_html_report_file, inputs=[report_df, file_for_report],
|
2021 |
-
outputs=html_download_file, show_progress='full')
|
2022 |
-
|
2023 |
-
# screen_waiting.change(fn=check_job_status, inputs=run_state, outputs=[pair_waiting, tabs, file_for_report],
|
2024 |
-
# every=5)
|
2025 |
-
# identify_waiting.change(fn=check_job_status, inputs=run_state, outputs=[identify_waiting, tabs, file_for_report],
|
2026 |
-
# every=5)
|
2027 |
-
# pair_waiting.change(fn=check_job_status, inputs=run_state, outputs=[pair_waiting, tabs, file_for_report],
|
2028 |
-
# every=5)
|
2029 |
-
|
2030 |
-
# demo.load(None, None, None, js="() => {document.body.classList.remove('dark')}")
|
2031 |
-
|
2032 |
-
if __name__ == "__main__":
|
2033 |
-
screen_block.queue(max_size=3)
|
2034 |
-
identify_block.queue(max_size=3)
|
2035 |
-
infer_block.queue(max_size=3)
|
2036 |
-
report.queue(max_size=3)
|
2037 |
|
2038 |
-
|
2039 |
-
|
2040 |
|
2041 |
-
|
2042 |
-
show_api=False,
|
2043 |
-
)
|
|
|
1 |
+
from email.utils import formatdate, make_msgid
|
2 |
+
from email.mime.multipart import MIMEMultipart
|
3 |
+
from email.mime.text import MIMEText
|
4 |
+
import smtplib
|
5 |
+
from markdown import markdown
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
def send_email(receiver, job_info):
|
9 |
+
email_serv = "smtpdm.aliyun.com" # "ciddr-lab.ac.cn" # "srvsmtp.xjtlu.edu.cn"
|
10 |
+
email_port = 80 # 1025 # 587 # 25
|
11 |
+
email_addr = "[email protected]"
|
12 |
+
email_pass = "ciddrw447JkpB"
|
13 |
+
email_form = """
|
14 |
+
Dear user,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
Your DeepSEQreen job is {status}.
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
**Job details:**
|
|
|
19 |
|
20 |
+
- Job id: {id}
|
21 |
+
- Job type: {type}
|
22 |
+
- Start time: {start_time}
|
23 |
+
- End time: {end_time}
|
24 |
+
- Expiry time: {expiry_time}
|
25 |
+
- Error: {error}
|
26 |
|
27 |
+
Please visit the [DeepSEQreen web server](https://www.ciddr-lab.ac.cn/deepseqreen/) to check the job status or retrieve the results.
|
|
|
28 |
|
29 |
+
Best,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
CIDDR Team
|
32 |
"""
|
33 |
+
server = smtplib.SMTP(email_serv, email_port)
|
34 |
+
# server.starttls()
|
35 |
|
36 |
+
server.login(email_addr, email_pass)
|
37 |
+
msg = MIMEMultipart("alternative")
|
38 |
+
msg["From"] = email_addr
|
39 |
+
msg["To"] = receiver
|
40 |
+
msg["Subject"] = f"DeepSEQreen Job {job_info['status']}: {job_info['id']}"
|
41 |
+
msg["Date"] = formatdate(localtime=True)
|
42 |
+
msg["Message-ID"] = make_msgid()
|
43 |
|
44 |
+
msg.attach(MIMEText(markdown(email_form.format(**job_info)), 'html'))
|
45 |
+
msg.attach(MIMEText(email_form.format(**job_info), 'plain'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
server.sendmail(email_addr, receiver, msg.as_string())
|
48 |
+
server.quit()
|
49 |
|
50 |
+
send_email('xinran.[email protected]', {'id': 'a1b2c3d', 'type': 'Drug Hit Screening', 'status': 'RUNNING', 'start_time': '2021-10-10 10:00:00', 'end_time': 'TBD', 'expiry_time': 'TBD', 'error': 'TBD'})
|
|
|
|