libokj commited on
Commit
9cd3781
·
1 Parent(s): 20d7915

Delete deepscreen/gui

Browse files
deepscreen/gui/__init__.py DELETED
File without changes
deepscreen/gui/test.py DELETED
@@ -1,114 +0,0 @@
1
- from pathlib import Path
2
-
3
- import gradio as gr
4
-
5
- # Use this in a notebook
6
- root = Path.cwd()
7
-
8
-
9
- drug_encoder_list = [f.stem for f in root.parent.joinpath("configs/model/drug_encoder").iterdir() if f.suffix == ".yaml"]
10
-
11
- drug_featurizer_list = [f.stem for f in root.parent.joinpath("configs/model/drug_featurizer").iterdir() if f.suffix == ".yaml"]
12
-
13
- protein_encoder_list = [f.stem for f in root.parent.joinpath("configs/model/protein_encoder").iterdir() if f.suffix == ".yaml"]
14
-
15
- protein_featurizer_list = [f.stem for f in root.parent.joinpath("configs/model/protein_featurizer").iterdir() if f.suffix == ".yaml"]
16
-
17
- classifier_list = [f.stem for f in root.parent.joinpath("configs/model/classifier").iterdir() if f.suffix == ".yaml"]
18
-
19
- preset_list = [f.stem for f in root.parent.joinpath("configs/model/preset").iterdir() if f.suffix == ".yaml"]
20
-
21
-
22
- from typing import Optional
23
-
24
- def drug_target_interaction(
25
- binary: bool,
26
- drug_encoder,
27
- drug_featurizer,
28
- protein_encoder,
29
- protein_featurizer,
30
- classifier,
31
- preset,) -> Optional[float]:
32
-
33
-
34
- return 1
35
-
36
- def drug_encoder(
37
- binary: bool,
38
- drug_encoder,
39
- drug_featurizer,
40
- protein_encoder,
41
- protein_featurizer,
42
- classifier,
43
- preset,):
44
-
45
- return
46
-
47
- def protein_encoder(
48
- binary: bool,
49
- drug_encoder,
50
- drug_featurizer,
51
- protein_encoder,
52
- protein_featurizer,
53
- classifier,
54
- preset,):
55
-
56
- return
57
-
58
- # demo = gr.Interface(
59
- # fn=drug_target_interaction,
60
- # inputs=[
61
- # gr.Radio(["True", "False"]),
62
- # gr.Dropdown(drug_encoder_list),
63
- # gr.Dropdown(drug_featurizer_list),
64
- # gr.Dropdown(protein_encoder_list),
65
- # gr.Dropdown(protein_featurizer_list),
66
- # gr.Dropdown(classifier_list),
67
- # gr.Dropdown(preset_list),
68
- # ],
69
- # outputs=["number"],
70
- # show_error=True,
71
- #
72
- # )
73
- #
74
- # demo.launch()
75
-
76
-
77
- from omegaconf import DictConfig, OmegaConf
78
-
79
- type_to_component_map = {list: gr.Text, int: gr.Number, float: gr.Number}
80
-
81
-
82
- def get_config_choices(config_path: str):
83
- return [f.stem for f in Path("../../configs/", config_path).iterdir() if f.suffix == ".yaml"]
84
-
85
-
86
- def create_blocks_from_config(cfg: DictConfig):
87
- with gr.Blocks() as blocks:
88
- for key, value in cfg.items():
89
- if type(value) in [int, float]:
90
- component = gr.Number(value=value, label=key, interactive=True)
91
- if type(value) in [dict, DictConfig]:
92
- with gr.Tab(label=key):
93
- component = create_blocks_from_config(value)
94
- else:
95
- component = gr.Text(value=value, label=key, interactive=True)
96
- return blocks
97
-
98
-
99
- def create_interface_from_config(fn: callable, cfg: DictConfig):
100
- inputs = []
101
-
102
- for key, value in OmegaConf.to_object(cfg).items():
103
- component = type_to_component_map.get(type(value), gr.Text)
104
- inputs.append(component(value=value, label=key, interactive=True))
105
-
106
- interface = gr.Interface(fn=fn, inputs=inputs, outputs="label")
107
-
108
- return interface
109
-
110
-
111
- import hydra
112
-
113
- with hydra.initialize(version_base=None, config_path="../../configs/"):
114
- cfg = hydra.compose("train")