Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,7 @@ from pathlib import Path
|
|
12 |
import sys
|
13 |
|
14 |
import numpy as np
|
|
|
15 |
from Bio.Align import PairwiseAligner
|
16 |
# from email_validator import validate_email
|
17 |
import gradio as gr
|
@@ -1178,11 +1179,25 @@ QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
|
1178 |
if library in TARGET_LIBRARY_MAP.keys():
|
1179 |
identify_df = pd.read_csv(Path('data/target_libraries', TARGET_LIBRARY_MAP[library]))
|
1180 |
else:
|
1181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1182 |
validate_columns(identify_df, ['X2'])
|
1183 |
|
1184 |
identify_df['X1'] = smiles
|
1185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1186 |
job_id = uuid4()
|
1187 |
temp_file = Path(f'{job_id}_input.csv').resolve()
|
1188 |
identify_df.to_csv(temp_file, index=False)
|
|
|
12 |
import sys
|
13 |
|
14 |
import numpy as np
|
15 |
+
from Bio import SeqIO
|
16 |
from Bio.Align import PairwiseAligner
|
17 |
# from email_validator import validate_email
|
18 |
import gradio as gr
|
|
|
1179 |
if library in TARGET_LIBRARY_MAP.keys():
|
1180 |
identify_df = pd.read_csv(Path('data/target_libraries', TARGET_LIBRARY_MAP[library]))
|
1181 |
else:
|
1182 |
+
if library_upload.endswith('.csv'):
|
1183 |
+
identify_df = pd.read_csv(library_upload)
|
1184 |
+
elif library_upload.endswith('.fasta'):
|
1185 |
+
records = list(SeqIO.parse(library_upload, "fasta"))
|
1186 |
+
id2 = [record.id for record in records]
|
1187 |
+
seq = [str(record.seq) for record in records]
|
1188 |
+
identify_df = pd.DataFrame({'ID2': id2, 'X2': seq})
|
1189 |
+
else:
|
1190 |
+
raise 'Currently only csv and fasta files are supported.'
|
1191 |
validate_columns(identify_df, ['X2'])
|
1192 |
|
1193 |
identify_df['X1'] = smiles
|
1194 |
+
if not np.isin('ID1', identify_df.columns):
|
1195 |
+
identify_df['ID1'] = 'Input'
|
1196 |
+
if not np.isin('ID2', identify_df.columns):
|
1197 |
+
identify_df['ID2'] = list(range(identify_df.shape[0]))
|
1198 |
+
identify_df = identify_df.loc[:, ['ID1', 'X1', 'ID2', 'X2']]
|
1199 |
+
identify_df['Y'] = 0
|
1200 |
+
|
1201 |
job_id = uuid4()
|
1202 |
temp_file = Path(f'{job_id}_input.csv').resolve()
|
1203 |
identify_df.to_csv(temp_file, index=False)
|